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A B S T R A C T

To calculate the uncertainty in the failure probability of elastomeric materials, a parametric and a non-
parametric Bayesian-based stochastic constitutive model were evaluated. (i) A Bayesian linear regression
calibration technique is created based on the Carroll model to construct a probabilistic hyper-elastic model in
the parametric approach. The model was then calibrated using two methods: Maximum Likelihood Estimation
(MLE) and Maximum a Posteriori (MAP) estimation, with the results compared. (ii) The Gaussian process (GP)
is used in non-parametric hyper-parameters of the radial basis kernel computed using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno technique. Both models were trained and verified with regard to two
sets of our experiments on silicon- and polyurethane-based elastomers to demonstrate their capabilities in
modeling uncertainty propagation. Finally, failure probability analysis was carried out for these data sets using
First Order Reliability Method (FORM) analysis and Crude Monte Carlo (CMC) simulation, with a limit state
function based on the stochastic constitutive model at the failure point. Sensitivity analysis is also used to
demonstrate the importance of Carroll model parameters in predicting failure likelihood. The results show that
the parametric approach has great agreement with experimental data, not only for uncertainty quantification
and model calibration, but also for calculating the failure probability of hyperelastic materials.
. Introduction

In many applications, proper prediction of the end-life of rubber-
ike materials has been a subject of significant interest, which comes
ith major challenges. One major challenge is the large uncertainty
bserved in the behavior of elastomers induced by intrinsic defects,
rocessing, sample manufacturing, or simply heterogeneous nature of
he matrix. Elastomers are often made by highly cross-linked polymer
atrix that behave fully elastic with entropic force, which results in
highly non-linear behavior, especially during large deformation and

ignificant hardening observed before failure.
The hyperelastic behavior of isotropic incompressible rubbers has

een studied to establish a function of strain energy that meets all
he physical and continuum conditions (Mooney, 1940; Ogden, 1972;
rruda and Boyce, 1993). The development of constitutive models

or rubber-like materials is hindered by both incompleteness of the
heoretical approach and limitation in experiment observation.

In the past decades, researchers have proposed many deterministic
onstitutive models based on materials’ average response to mechanical
longation without considering uncertainty (Steinmann et al., 2012;
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E-mail addresses: ghaderi1@msu.edu (A. Ghaderi), morovati@austin.utexas.edu (V. Morovati), roozbeh@msu.edu (R. Dargazany).

Liao et al., 2020, 2021). Thus, it was challenging to calculate confi-
dence bounds in prediction of the material response or reduce the error
of the model. In addition, one of the main challenges in deterministic
approaches is the intrinsic variation of failure stretch/stress of different
samples, which cannot be described by deterministic methods. So, state
of failure can be better defined as a Fuzzy variable rather than a binary
process which is the main focus of this study.

The study of quantitative characterization and the elimination of un-
certainties in both computational and real-world applications is known
as uncertainty quantification (UQ). If certain elements of a system are
not exactly understood, UQ try to quantify how relevant those elements
are. UQ can limit the range of validity of the model predictions by
providing the error bounds. Most current models are developed based
on a deterministic approach, where a specific and certain response is
calculated to describe the average response of the system. However, in
real-life applications, the behavior of the polymeric systems mostly fol-
low a probabilistic pattern, which limits the relevance of deterministic
models (Honarmandi, 2019; Cao et al., 2021). One major advantage
of UQ is that the probabilistic models can provide multiple sets of
values for material parameters to fit certain behavior in the form of
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the probability distribution of model prediction through uncertainty
propagation. Such variation of the parameters allows users to study
and predict system behavior in unexpected events, in particular in
failure prediction. In deterministic models, failure is described to occur
abruptly and surely once the nominal stress 𝜎 exceeds a deterministic
failure strength threshold 𝜎𝑓 . However, in a probabilistic approach,
oth 𝜎 and 𝜎𝑓 are defined as probabilities, and thus with an increase
f stress, only the probability of failure increases without providing a
articular location for failure.

So, considering the occurrence of the failure as a probabilistic
arameter rather than a black or white event, one can classify the ob-
erved uncertainty as the superposition of two different errors, namely
i) ‘‘epistemic errors’’ are often induced by lack of knowledge and can
e reduced by assigning additional resources, and (ii) ‘‘aleatory errors’’
re intrinsic error of the system, which cannot be reduced and can only
e shifted from one parameter to another. The goal of UQ in computa-
ional modeling is the calculation of uncertainty in the modeling and its
rediction (Yang et al., 2019; Pouresmaeeli et al., 2018). Two statistical
iews usually evaluate the quantification process: the frequentist view,
hich defines probability during a long-term observation based on

he rate of occurrence, and the Bayesian view, which considers the
egree of belief based on the combination of prior knowledge and new
ata for probability. So, in the frequentist view, parameters are fixed
andom variables. However, in the Bayesian perspective, parameters are
andom variables based on the available data. Although incorrect prior
nowledge can mislead the model, the true definition is helpful in
tatistical inference (Rocchetta et al., 2018; Ghanipour et al., 2018).
o, uncertainty quantification is the prerequisite of the calculation of
ailure probability.

Several deterministic models have been proposed during past
ecades. In 1948, Rivlin (1948) investigated fundamental concepts of
arge elastic deformation of isotropic materials. In 2020, we proposed a
hysics-based data-driven constitutive model for cross-linked polymers
y embedding neural networks in micro-sphere (Ghaderi et al., 2020).

In recent years, several studies have been conducted on the stochas-
ic modeling of constitutive models of soft materials (Madireddy et al.,
015; Brewick and Teferra, 2018; Fitt et al., 2019). In 2015, a Bayesian
arametric approach was employed for calibration of the constitu-
ive model for soft tissue based on Bayes factors (Madireddy et al.,
015). Brewick and Teferra (2018) derived a parametric UQ model of
gden model for brain tissue. They calculated posterior distribution
f the constitutive parameters by employing Markov Chain Monte
arlo. Kamiński and Lauke (2018), derived parametric UQ models of
ultiple constitutive models ranging from Neo-Hookean to Arruda–
oyce, and showed probabilistic characteristics, such as expectation,
ariance, skewness, and kurtosis.Recently, Fitt et al. (2019) published
heir study on the uncertainty quantification of elastic materials by
sing Bayes’ theorem to select the model. Another parametric study has
een used as a Bayesian calibration framework to determine the poste-
ior parameter distributions of a hyper-viscoelastic constitutive model
sing mechanical testing data of brain tissue (Teferra and Brewick,
019).

While several studies were conducted on predicting the failure
robability of materials and structures, Orta and Bartlett (2015), Dim-
trov et al. (2017), Mishra et al. (2019) and Khashaba et al. (2017)
he failure of rubber-like materials remains a challenging issue. Here,
ur goal is to advance a parametric UQ approach to predict failure
robability from the Carroll constitutive model. The model is then
ompared with predictions of a non-parametric UQ approach which
omes at considerably higher computational cost. Note that we selected
he Carroll model because compared to other complex model such as
icrosphere model and tube model it is simpler with equal accuracy for

oth Treloar’s and Kawataba’s dataset (Dal et al., 2021). Carroll model
ot only has just three parameters but also it can capture the behavior
f elastomers in different states of deformation such as biaxial, and
2

shear because it is function of first and second invariants of deformation
tensor.

In this contribution, our goal is to carry out three fundamental steps
in probabilistic modeling of elastomers, namely (i) Bayesian evalua-
tion of constitutive model (Carroll model Carroll, 2011) parameters
for hyperelastic behavior of rubber-like materials from two distinct
experimental data, (ii) Development of confidence bounds for stress–
strain curves based on conjugate prior, and (iii) failure probability
was calculated based on First Order Reliability Method (FORM) and
validated against that of Crude Monte Carlo (CMC) simulation to pro-
vide a sensitivity analysis on the effect of model parameters on failure
probability.

This work presents two stochastic models as prerequisite of calcu-
lation of failure probability. The proposed method can be presented in
the following steps:

Step 1 Proposing a Bayesian-based parametric stochastic model
for smooth data built on the Carroll model (Carroll, 2011), which is
developed using Bayesian statistics calibration

Step 2 proposing a non-parametric stochastic constitutive model
for noisy data based on Gaussian Process (GP).

Step 3 By training both models by constitutive behavior of silicon-
and polyurethane-based adhesives, we show that both approaches can
provide accurate predictions in rubber-like materials.

Step 4 We will develop a probabilistic failure model based on
he parametric stochastic model using the limit state function, which
an also be developed using the same approach for non-parametric
onstitutive models, although with higher computational cost and a
ifferent implementation strategy.
Step 5 Predicting the failure using FORM method, a sensitivity

nalysis is employed to show the importance of each parameter of con-
titutive model in the probability of failure, and validate the predictions
gainst those of CMC method.

The rest of this manuscript is organized as follows. In Section 2,
parametric stochastic constitutive model based on Bayesian model

alibration is mentioned for both cases of maximum prior estimation
nd maximum likelihood estimation. Next, we discuss GP as a non-
arametric model in detail for finding hyper-parameters of the kernel-
ased on the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
FGS) method in Section 3. Moreover, the probability of failure analysis
ased on FORM and CMC simulations are explained in Section 4.
inally, the results are presented in Section 5 for two compounds tested
n our facility as are described in details.

. Parametric approach

The first step in parametric calculation of the failure probability is
aking a stochastic surrogate model from the behavior of materials.
o this end, a probabilistic constitutive model is required to model
ncertainties which affect the materials’ behavior.

In UQ analysis, one way to categorize the sources of uncertainty is
o consider: (1) Parameter uncertainty which comes from the model pa-
ameters that are inputs to the computer model (mathematical model)
ut whose exact values are unknown to experimentalists and can-
ot be controlled in physical experiments, or whose values cannot
e exactly inferred by statistical methods. (2) Structural uncertainty
nown as model inadequacy, model bias, or model discrepancy, this
omes from the lack of knowledge of the underlying physics in the
roblem. (3) Algorithmic uncertainty known as numerical uncertainty,
r discrete uncertainty. This type comes from numerical errors and
umerical approximations per implementation of the computer model.
4) Experimental uncertainty known as observation error, this comes
rom the variability of experimental measurements. (5) Interpolation
ncertainty which comes from a lack of available data collected from
omputer model simulations and/or experimental measurements.

In the Parametric Stochastic Constitutive model, the hyper-elastic
esponse is characterized by Carroll model (Carroll, 2011). The strain
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energy function 𝛹 and uni-axial stress of the Carroll model 𝑃𝑈𝑇 are
iven as

= 𝑊1𝐼1 +𝑊2𝐼
4
1 +𝑊3

√

𝐼2, (1)

𝑈𝑇 =
(

2𝑊1 + 8𝑊2
(

2𝜆−1 + 𝜆2
)3 +𝑊3

(

1 + 2𝜆3
)− 1

2

)

(

𝜆 − 𝜆−2
)

, (2)

where 𝜆 is the principal stretch in the uni-axial tensile loading, 𝐼1 and
2 are the second invariant of Green–Cauchy tensor (Appendix), and
𝑖 |𝑖=1..3 are model parameters.
Let us first describe the steps required for the calibration of a

onstitutive model as a stochastic model. A constitutive model should
e able to connect deformation input 𝜆 to stress output 𝑃 through
ertain internal parameters 𝑾 such that

𝑷 = 𝑓 (𝝀;𝑾 ) + 𝜖, 𝑤𝑖𝑡ℎ 𝑓 (𝝀;𝑾 ) =
𝑚
∑

𝑗=1
𝑊𝑗𝜙𝑗 (𝜆) , 𝑎𝑛𝑑

 (𝜖) = 𝑁
(

𝜖|0, 𝜎2
)

,

(3)

where 𝜙𝑗 are the basis functions, 𝑚 is the number of basis functions, and
𝑊𝑗 are the weight parameters gathered in vector 𝑾 . Here, 𝑁

(

𝜖|0, 𝜎2
)

epresents the Gaussian distribution of noise around zero with variance
2 which is assumed to represent  (𝜖). Inserting Carroll model (Car-
oll, 2011) in Eq. (2), 𝑓 (𝝀;𝑾 )𝐷 will be represented by three weight

parameters and three basis functions, where 𝑚 = 3. As a representative
onstitutive models, the Carroll model (Carroll, 2011) is chosen due
o its performance in predicting different states of deformation, which
as a rational error. In a stochastic calibration problem (Mihai et al.,
018), we optimize function 𝑓 (𝝀;𝑾 ) by fitting 𝑾 with a dataset 𝑫 of
observations of 𝜆, and 𝑃 as summarized below

=
{[

𝜆1, 𝑃1
]

...
[

𝜆𝑛, 𝑃𝑛
]}

= {𝑷 ,𝝀} . (4)

ayesian Methodology is used to calculate the joint probability dis-
ribution of model parameters and accordingly to derive uncertainty
ssociated with experimental data (Box and Tiao, 2011). In comparison
o the least square method (LSM), the Bayesian approach can show the
odel uncertainty with stochastic parameters, while LSM mainly search

or the best parameters for fitting without providing any information
egarding parameters’ probability. Bayesian method is based on the
ayes conditional rule of probability where

(𝑾 |𝑫,𝑀) =
 (𝑫|𝑾 ,𝑀) (𝑾 |𝑀)

 (𝑫)
, (5)

which 𝑾 is the vector of unknown model parameters, and 𝑀 is the
chosen model, namely, the Carroll model (Carroll, 2011). 𝑃 (𝑾 |𝑀)
s the prior joint distribution and shows the degree of belief to the
arameters before we know the data.  (𝑫|𝑾 ,𝑀) is the likelihood
oint distribution which describes the observation probability of what
e have observed, and  (𝑾 |𝑫,𝑀) is the posterior distribution. Here,

 (𝑫) is a normalizer, given as follow

 (𝑫) = ∫𝑾
 (𝑫|𝑾 ,𝑀) (𝑾 |𝑀) 𝑑𝑾 . (6)

For parameter estimation, the marginal likelihood  (𝑫) does not af-
fect the value of the weight parameters 𝑾 , so it is often considered
as a normalization constant. In the absence of any information, the
prior probability of the parameters can be assumed to be a Gaussian
distribution on the parameter space. It is one way to illustrate our prior
ignorance about the weight parameters 𝑾 .

Selection of prior is an important step in Bayesian approach, which
can be accomplished using different approaches such as right Haar mea-
surement, Jeffreys prior (Robert, 2007), reference priors (Berger and
Bernardo, 1992), Maxent priors (Jaynes, 2003), conjugate priors (Vila
et al., 2000). Conjugate priors, unlike other methods, lead to the spe-
cific family of distributions for posterior distributions. In this study, we
choose prior from the Gaussian family to make the integration of Bayes
rule simpler compared to other methods that are problematic and not
3

practical for feeding failure probability analysis. This selection does not
affect results significantly because new observation leads to updating of
prior distribution after each step. Meanwhile, model selection strategies
are manyfold in Bayesian methodology. Bayesian methods using Bayes
factor, frequentist methods, and Bayesian Information Criterion are the
most popular approaches. The Bayesian method has certain benefits
over the strategies of frequentism. First, the model’s posterior proba-
bilities and the Bayes factor are easier to understand as the odds of one
model over the other. Second, the Bayesian method is compatible in
the sense that if it is part of the candidate model set under very mild
conditions, it ensures the choice of the true model (Berger et al., 2001;
Berk, 1966). Accordingly, our Prior can be given as

 (𝑾 ; 𝛼) = 
(

𝑾 |𝟎, 1
𝛼
𝐈
)

, (7)

where the initial assumption is to distribute the weights around zero,


(

𝑾 |𝟎, 𝛼−1𝐈
)

, with precision parameter 𝛼(Tipping, 2001; Chen and
Martin, 2009) for MAP that serves as a regulatory index to prevent
overfitting and with precision parameter 𝛼 equal to 1 for MLE. The
precision parameter is associated with the uncertainty over values of
𝑾 .

Model Calibration will be carried out using two different methods
to validate them against each other, (i) Maximum Likelihood Estima-
tion (MLE), and (ii)Maximum a Posterior (MAP) estimation are Burr
(2004).

2.1. Maximum Likelihood Estimation (MLE)

The concept of MLE seeks a probability distribution that ‘‘most
likely’’ regenerate the observations. In other words, it seeks a weight
parameter vector, 𝑾 𝑀𝐿𝐸 which maximizes the likelihood function
(𝑾 |𝑫,𝑀). MLE estimates, 𝑾 𝑀𝐿𝐸 , may not exist nor be unique. To

educe computational costs, 𝑾 𝑀𝐿𝐸 is often obtained by maximizing
he log of the likelihood function, ln(𝑾 |𝑫,𝑀), which has a signifi-
antly slower growth rate. In essence, since both the likelihood function
nd its log function are monotonically related to each other, 𝑾 𝑀𝐿𝐸
hould maximize both. Assuming log-likelihood to be differentiable,
LE principal yields the following conditions

𝜕 ln(𝑾 |𝑫,𝑀)
𝜕𝑾

|

|

|

|𝑾 =𝑾 𝑀𝐿𝐸

= 0,
𝜕2 ln(𝑾 |𝑫,𝑀)

𝜕𝑾 2

|

|

|

|

|𝑾 =𝑾 𝑀𝐿𝐸

< 0,

(8)

where the second condition ensures the convexity of the function at
the optimum 𝑾 𝑀𝐿𝐸 . Rewriting Eq. (5) with respect to stress and
eformation, the posterior summarizes our state of knowledge after
bserving constitutive data if we know the noise variance 𝜎2. In view
f Eq. (5), the posterior is given as


(

𝑾 |𝝀,𝑷 ; 𝜎2
)

=

(

𝑷 |𝝀,𝑾 ; 𝜎2
)

 (𝑾 )
 (𝑷 |𝝀)

,

 (𝑷 |𝝀) = ∫ 
(

𝑷 |𝝀,𝑾 ; 𝜎2
)

 (𝑾 ) 𝑑𝑾 ,
(9)

where  (𝑷 |𝝀) is the marginal likelihood of producing the experimental
dataset 𝑫. Assuming likelihood and prior to be Gaussian, we can write
the likelihood function with respect to Eq. (8) as


(

𝑷 |𝝀,𝑾 ; 𝜎2
)

= exp
(

− 1
2𝜎2

‖Φ𝑾 − 𝑷 ‖

2
)

(10)

where Φ ∈ R𝑛×𝑚 is a matrix with values of basis functions distributed
over observation points 𝑫 such that 𝛷𝑖,𝑗 = 𝜙𝑖(𝜆𝑗 ). In MLE approach, one
can find the weight parameters, 𝑾 𝑀𝐿𝐸 , by derivation from Eq. (10)

∇
(

𝑷 |𝝀,𝑾 ; 𝜎2
)

= 0 ⇒ 𝑾 𝑀𝐿𝐸 =
(

Φ𝑇Φ
)−1

Φ𝑇𝑷 ,

𝜎2 =
‖Φ𝑾 𝑀𝐿𝐸 − 𝑷 ‖

2
.

(11)

𝑀𝐿𝐸 𝑛
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The posterior function is consequently derived as a PDF function of
multivariate distribution  as
(

𝑷 |𝝀,𝑾 ; 𝜎2
)

= 
(

𝑷 |𝑾 𝑇
𝑀𝐿𝐸𝜱(𝝀); 𝜎2𝑀𝐿𝐸

)

. (12)

The posterior function allows us to make a probability distribution for a
new target constitutive values 𝜆∗, and 𝜎∗ based on the optimized weight
arameters 𝑾 𝑀𝐿𝐸 using (𝑷 ∗

|𝝀∗,𝑾 𝑀𝐿𝐸 ; 𝜎), where the median 𝑚(𝜆),
ower bound 𝑙(𝜆), and upper bound 𝑢(𝜆), for any new target deformation
an be calculated as

𝑚(𝜆) =
𝑚
∑

𝑗=1
𝑊𝑀𝐿𝐸∶𝑗𝜙𝑗 (𝜆), 𝑙(𝜆) ≈ 𝑚(𝜆) − 2𝜎𝑀𝐿𝐸 ,

𝑢(𝜆) ≈ 𝑚(𝜆) + 2𝜎𝑀𝐿𝐸 .

(13)

2.2. Maximum a posteriori (MAP) estimation

In this method, the measurement process is modeled using the
posterior to find parameters. We believe that our measurement is
around the model prediction, but it is contaminated by Gaussian noise.
So, we have the same likelihood here Eq. (10). The difference between
this method with the last method is, here, we maximize posterior. This
method is very similar to MLE, with the addition of the prior probability
over the distribution and parameters. In fact, if we assume that all
values of weights are equally likely because we do not have any prior
information, then both calculations are equivalent. Thus, both MLE
and MAP often converge to the same optimization problem for many
machine learning algorithms because of this equivalence. This is not
always the case. If the calculation of the MLE and MAP optimization
problem differ, the MLE and MAP solution found for an algorithm may
also differ. We model the uncertainty in model parameters using a
prior. In the MAP approach, the likelihood function in Eq. (9) will be
calculated differently based on conjugate prior and given as

 (𝑷 |𝝀,𝑾 ; 𝜎) = exp
(

− 1
2𝜎2

‖Φ𝑾 − 𝑷 ‖

2 − 𝛼
2
‖𝑾 ‖

2
)

, (14)

where one can find the optimized weight parameters that are gathered
in 𝑾 𝑀𝐴𝑃 , by derivation from Eq. (14)

∇
(

𝑷 |𝝀,𝑾 ; 𝜎2
)

= 0 ⇒ 𝑾 𝑀𝐴𝑃 = arg max log (𝑷 |𝝀,𝑾 ; 𝜎)

= 𝐒𝑀Φ𝑇𝑷 , 𝐒𝑀 =
(

𝛼𝐈 + 1
𝜎2

Φ𝑇Φ

)−1
. (15)

he posterior function is consequently derived as

(𝑾 |𝝀,𝑷 ) = 
(

𝑾 |𝑾 𝑁 ,𝐒𝑁
)

= det
(

2𝜋𝐒𝑁
)− 1

2

× exp
(

−1
2
(𝑾 −𝑾 𝑁 )𝑇 𝐒−1𝑁 (𝑾 −𝑾 𝑁 )

)

, (16)

where 𝑾 𝑁 is the mean vector, 𝐒𝑁 is covariance matrix, and for a
Gaussian posterior, 𝑾 𝑀𝐴𝑃 = 𝑾 𝑁 , and 𝐒𝑀 = 𝐒𝑁 . The posterior
function allows us to make a probability distribution for a new tar-
get deformation values 𝜆∗ based on the optimized weight parameters
𝑾 𝑀𝐴𝑃 as


(

𝑷 ∗
|𝝀∗,𝑾 𝑁 ,𝐒𝑁

)

= 
(

𝑷 ∗
|𝑾 𝑇

𝑁𝝓(𝝀∗),𝐒𝑁
)

, (17)

where the median 𝑚(𝜆), lower bound 𝑙(𝜆), and upper bound 𝑢(𝜆), for
any new target deformation can be calculated as

𝑚(𝜆) =
𝑚
∑

𝑗=1
𝑊𝑀𝐴𝑃∶𝑗𝜙𝑗 (𝜆), 𝑙(𝜆) ≈ 𝑚(𝜆) − 2𝜎, 𝑢(𝜆) ≈ 𝑚(𝜆) + 2𝜎.

(18)

3. Non-parametric approach

A Non-parametric Stochastic Constitutive Model is proposed to
describe the constitutive behavior of elastomers and its associated
4

uncertainty. Unlike parametric method, this method is generic and can 𝝁
be applied to any mapping ranging simple to complex, although at
significantly higher computational cost (Planas et al., 2021; Bostanabad
et al., 2020). Gaussian processes (GP) take a non-parametric approach
to model selection. Compared to Bayesian linear regression, GP is more
general because the form of the classifier is not limited by a parametric
form (Fuhg et al., 2021a,b). GP can also handle the case in which data
is available in different forms, as long as we can define an appropriate
covariance function for each data type. Bessa et al. (2017) and Liu et al.
(2016) employed Gaussian processes and neural networks to create a
constitutive model for hyperelastic materials, and also to predict plastic
properties.

Gaussian process (GP). represents the probability of function outputs
by providing a joint Gaussian distribution of the output for any set of
input points (Rasmussen, 2003). This property, and the fact that the
distribution of a subset conditioned on the rest is also Gaussian for any
set of observations with a joint Gaussian distribution, allows predictions
to be made at an unknown point (𝝀∗) based on previous observations
𝑫. A GP on a model can be written as

(𝑷 ) =  {𝑷 |𝝁;𝐊 (𝝀,𝝀)} (19)

where 𝝁 is the mean function which indicates the central tendency
of the  . Assuming no particular knowledge about the trend of the
function, we pick a zero mean function. (𝑷 ) denotes our beliefs about
𝑷 . Tensor 𝐊 is symmetric matrix (kernel) that describes the covariance
between every pair of components in the input vector 𝝀 and depends on
a set of hyperparameters 𝜽. There is a one-to-one correspondence be-
tween the differentiability of the covariance function and samples from
the GP probability measurement of the GP probability measurement
when selecting the covariance function model (Adler, 2010). Describing
𝐊 using the squared exponential covariance function, we can write the
components as

𝐾𝑖𝑗 = 𝑘
(

𝜆𝑖, 𝜆𝑗
)

= 𝜈0 exp

(

−1
2
∑

𝑛=1

(𝜆𝑖𝑛 − 𝜆𝑗 𝑛)2

𝑙𝑛

)

, (20)

where 𝜽 ∈ {𝜈0, 𝑙1, 𝑙2,… , 𝑙𝑛}, and 𝜆𝑖𝑛 is 𝑛th element of 𝜆𝑖 from data
set. Hyperparameters 𝑙𝑛 and 𝜈0 represent the length-scale and output-
scale, respectively. Consider that a GP prior  (𝑷 |𝜇;𝐊) is chosen for the
constitutive model 𝑀 , and our experimental data set is 𝐷 = [(𝜆𝑖, 𝑃𝑖)],

here 𝑃𝑖 = 𝑀(𝜆𝑖) + 𝜖𝑖 and (𝜖|𝜆) =  (𝜖, 0; 𝜎2); we can write GP prior
s

(𝑷 |𝜽) =  (𝑷 |𝝁 (𝝀|𝜽) ;𝐊 (𝝀,𝝀|𝜽)) , (21)

To fit the hyperparameters, we look for the 𝜽 that maximizes the
og-likelihood (Lee et al., 2020). Based on Eq. (16) for a Gaussian
istribution, log-likelihood can be written as

log (𝑷 |𝝀,𝜽) = −
(𝑷 − 𝝁)𝑇 𝐕−1 (𝑷 − 𝝁)

2
−

log det𝐕
2

−
𝑛 log 2𝜋

2
, with

𝐕 = 𝐊(𝝀,𝝀|𝜽) + 𝜎2𝐈

(22)

Marginal likelihood indicates the quality of the fitting of the model
o our training data. To optimize the training and maximize the log-
ikelihood, the best hyperparameters should be located and used for fit-
ing. In this study, we used L-BFGS method to maximize log-likelihood.
ur goal is prediction of function 𝑀(𝝀∗) at some test locations 𝝀∗.

Now, we can calculate mean and covariance functions at 𝝀 and evaluate
ultivariate Gaussian distribution. So, we can write joint distribution

etween the training function 𝑀(𝝀) = 𝑷 and the prediction function
alues 𝑀(𝝀∗) = 𝑷 ∗. Using Bayes’ rule
(

𝐏∗
|𝝀∗,𝑫

)

= 
(

𝐏∗
|𝝁𝑴|𝑫

(

𝝀∗
)

;𝐊𝑀|𝐷(𝝀∗,𝝀∗)
)

, (23)

here
(

𝝀∗
)

= 𝝁
(

𝝀∗
)

+𝐊
(

𝝀∗,𝝀
) (

𝐊(𝝀,𝝀) + 𝜎2𝐈
)−1 𝐏 − 𝝁(𝝀) , (24)
𝑴|𝑫 ( )



Mechanics of Materials 162 (2021) 104044A. Ghaderi et al.
Fig. 1. Concept of 𝛽 index with respect to LSF in (a) the physical space (b) the standard normal space.
and

𝐊𝑀|𝐷(𝝀∗,𝝀∗) = 𝐊
(

𝝀∗,𝝀∗
)

−𝐊
(

𝝀∗,𝝀
) (

𝐊 (𝝀,𝝀) + 𝜎2𝐈
)−1 𝐊

(

𝝀,𝝀∗
)

. (25)

where 𝐊(𝝀,𝝀∗) is the cross covariance between 𝝀 and 𝝀∗.

4. Probability failure calculation of hyperelastic materials

We explained in the last section how to model uncertainty from dif-
ferent sources into the constitutive models. In this section, we explain
how to use a probabilistic model derived from last section as an input
in calculation of failure probability.

In failure prediction of hyperelastic materials, uncertainty due to
variations in the material matrix (parameter and model uncertainty),
compounding (experimental uncertainty), geometry (structural uncer-
tainty), and loading conditions (experimental and interpolation un-
certainty) can strongly affect the accuracy of predictions. One main
challenge in the development of failure prediction engines is the lack
of a certain discrete threshold of failure to describe the phenomena
through zero and one events. In practice, samples fail over a wide
range of stress or strain amplitudes, which creates a strong margin of
error in the deterministic models of failure. To address this problem,
probabilistic models are needed to reproduce the probability of failure.

Let us represent the failure stress criteria by 𝜎𝑈 , which can be
considered as a deterministic value or a probabilistic distribution (see
Fig. 1). Next, by having the probabilistic constitutive behavior of the
material 𝑃 (𝑾 ), we can derive the failure profile 𝑝𝑓 with respect to 𝜎𝑈
using a limit state function (LSF) 𝑔(𝑾 ) as described below.

𝑔 (𝑾 ) = 𝜎𝑈 − 𝑃 (𝑾 ) , ⇒ 𝑔 (𝑾 ) ∶

⎧

⎪

⎨

⎪

⎩

> 0 Safe region
= 0 Limit state
< 0 Failure region: 𝑝𝑓

(26)

where 𝑃 (𝑾 ) is a constitutive equation of the variables 𝑊1,𝑊2,… ,𝑊𝑛
which is estimated from the Bayesian surrogate constitutive model
procedure which can be derived through aforementioned parametric
or non-parametric procedures (see Eq. (3)). The distribution 𝑃 (𝑾 ) can
be derived based on the experimental data on stress–strain behavior of
materials.

NATAF transformation will be used to map the distributions of
random constitutive variables, (𝑾 ), within their standard normal space
(for computational purposes Lu et al., 2014). Next, a first-order Tay-
lor expansion at the most probable point is sufficient to locate the
maximum failure probability of 𝑔(𝑾 ) (Lebrun and Dutfoy, 2009) (see
Fig. 1b). The failure probability 𝑃𝑓 integral over the failure region 𝑔 < 0
is written as

𝑃𝑓 = (𝑔 < 0) = ... 𝑓
(

𝑊1,𝑊2,… ,𝑊𝑛
)

𝑑𝑊1...𝑑𝑊𝑛, (27)
5

∫𝑔<0 ∫
Fig. 2. Monte Carlo simulation.

where 𝑓 is the probability density function, and 𝑛 is the size of the
input vector 𝑾 . In Eq. (27), the integral should be taken over 𝑝𝑓 where
𝑔 < 0. To simplify the integration, it would be sufficient to rewrite the
integration with respect to a normal standard space with 𝜇 = 0 and
𝜎 = 1. Accordingly, one can introduce a new limit state function 𝐺
on a normal standard space which represents the former 𝑔(𝑾 ) over
the current space. To convert the problem from current space to the
normal standard space, NATAF transformation (Faber, 2009) will be
used, which introduce new input parameters 𝑥𝑖 based on 𝑾 as

𝑥𝑖 = 𝛷−1 (𝑓 (𝑊𝑖)
)

, (28)

where 𝑓 and 𝛷−1 represents the cumulative distribution functions
(CDF) of 𝑾 and the inverse CDF of 𝑥𝑖, respectively. Accordingly, 𝑃𝑓
is estimated as given below (Lemaire, 2013)

𝑃𝑓 = 𝛷 (−𝛽) , 𝛽 =
𝜇𝐺
𝜎𝐺

, 𝜇𝐺 ≅ 𝐺
(

𝜇𝑥1 , 𝜇𝑥2 ,… , 𝜇𝑥𝑛
)

,

𝜎𝐺
2 ≅

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1

𝜕𝐺
𝜕𝑥𝑖

𝜕𝐺
𝜕𝑥𝑗

𝑐𝑜𝑣
(

𝑥𝑖, 𝑥𝑗
)

,
(29)

where 𝛽 is the reliability index, and represents the shortest distance
from the origin in standardized normal space to the hyperplane (de-
terministic) or paraboloid (probabilistic) formed by 𝐺 = 0. 𝛽 can be
calculated by solving an optimization problem. Let us introduce 𝑥∗ to
represent the point along the paraboloid, which has the least distance
to the origin, further referred to as the design point. Here, 𝜇𝐺 and
𝜎𝐺 are the mean and standard deviation of the 𝐺(𝒙) in the standard
normal space. In the FORM analysis, the paraboloid 𝐺(𝒙) = 0 can
be represented by a linear smooth surface which passes through the
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Fig. 3. Flowchart of steps of conducted study.
design point, 𝑥∗, designated by position vector 𝒙∗. Accordingly, we
have 𝐺(𝒙) ≈ 0 while 𝐺(𝒙∗) = 0, and thus the surface can be represented
by

𝐺 (𝒙) = 𝐺
(

𝑥∗
)

+ ∇𝐺𝑇 (𝒙)
(

𝒙 − 𝒙∗
)

, 𝒙∗ = 𝑎𝑟𝑔min {∥ 𝒙 ∥ |𝐺(𝒙) = 0} ,

(30)

where 𝛽 =∥ 𝒙∗ ∥. The improved Hasofer-Lind-Rackwitz–Fiessler
(iHLRF) method is used (Santosh et al., 2006) to find the design
point. Furthermore, having an arbitrary point (𝒙𝑚) as the design point
candidate in the iteration 𝑚, the new candidate design point (𝒙𝑚+1) can
be obtained by

𝒙𝑚+1 = 𝒙𝑚 + 𝛿𝑚.𝑑𝑚, (31)

where 𝛿𝑚, and 𝑑𝑚 are the step search and the search direction at the 𝑚 th
iteration, respectively. Here, 𝛿𝑚 = 𝑎𝐾 can be determined by Armijo rule
which considers 𝑎 to be a positive value (usually 𝑎 = 0.5), and 𝑘 to be an
integer that is iteratively increased from zero (Santos et al., 2012). The
proper search direction (𝑑𝑚) and the step search (𝛿𝑚) for carrying out
the search algorithms to find the design point are presented as follows

𝑑𝑚 =

(

𝐺(𝒙𝑚)
∥ 𝐺

(

𝒙𝑚
)

∥
+ 𝛼𝑇 𝒙𝑚

)

𝛼 − 𝒙𝑚, 𝛼 =
∇𝐺

(

𝒙𝑚
)

∥ ∇𝐺
(

𝒙𝑚
)

∥
. (32)

A convergence criteria is required to stop the search algorithm for
finding 𝒙𝑚 which is considered as follows

(1) By assuming 𝒙𝑚 to be almost on the surface of the limit state
function, we have 𝐺(𝒙𝑚) ≈ 0 which yields

𝐺
(

𝒙𝑚+1
)

− 𝐺(𝑥𝑚)
𝐺(𝑥𝑚)

< 𝑒1, (33)

where 𝑒1 ≈ 0.001 is the convergence parameter that defines the stop
criteria.
6

Fig. 4. Detailed sample dimensions.

(2) The surface gradient of the limit state function passes through
the coordinate reference point at the last point, which shows that the
current point is the closest point to the origin
|

|

|

|

|

𝒙𝑚
∥ 𝒙𝑚 ∥

−
(

𝛼𝑇𝑚
𝒙𝑚

∥ 𝒙𝑚 ∥

)

𝛼𝑚
|

|

|

|

|

< 𝑒2, (34)

where 𝑒2 is convergence parameter as a criteria to stop iteration.
It is 0.001 based on literature. After finding the design point (𝒙∗),
probability of failure is equal to 𝑃𝑓 = 𝛷 (− ∥ 𝒙∗ ∥).

Crude Monte Carlo (CMC) Simulation is used to provide bench-
mark for validating the predictions obtained by FORM. CMC simulation
is also used concurrently to estimate the limit state probabilities. The
results show the accuracy of the first-order approximation of LSF. CMC
is a popular method among the methods of sampling which generates
random numbers for random variables 𝑾 , based on their distribution.
Each time a random vector is generated, 𝑔(𝑾 ) will be validated and
consequently, we assume sample failure if 𝑔(𝑾 ) < 0 (see Fig. 2).
Integral of failure probability can be written as

𝑃𝑓 =  (𝑔 < 0) = ... 𝑓 (𝑾 ) 𝑑𝑾 =
+∞

...
+∞

𝐼 (𝑾 ) 𝑓 (𝑾 ) 𝑑𝑾
∫𝑔<0 ∫ ∫−∞ ∫−∞
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Fig. 5. Stretch–stress results of mechanical tests for (a) Silicone, (b) Polyurethane (c)Styrene-butadiene rubber.
Fig. 6. Model calibration of Carroll model for Polyurethane (a) prediction (b) plausible models.
Fig. 7. Model calibration of Carroll model for Silicone (a) prediction (b) plausible models.
v

𝑣

= 1
𝑁

𝑁
∑

𝑖=1
𝐼
(

𝑊𝑖
)

, (35)

where 𝑁 = 1
𝛿2𝑃𝑓

(

1−𝑃𝑓
𝑃𝑓

)

is the number of simulation, and 𝛿𝑃𝑓 = 0.05 is

a common value in the literature (Lemaire, 2013; Xiukai et al., 2020).
Note that Monte Carlo simulations constitute an integration method

which, with respect to numerical integration, represents an economical
means of choosing only some points by chance in the integration
domain instead of systematically scanning in all directions. The value
of the integration is thus deduced from the mathematical expectations
of the sampling. On the other hand, FORM is a method which includes
an integration method by estimation of LSF with Taylor expansion. The
reason that we represent and compare these methods is that we want
to show with CMC that first-order estimation of LSF in FORM is correct
7

or not. So, if their results are in a good agreement, it means that the
estimation is correct.

For understanding the procedure of this research, the below
flowchart shows the steps of this study in summary (see Fig. 3).

Sensitivity Analysis
Importance vector, 𝜸, is used as a computational tool to determine

the relative influence of the parameters in the failure probability func-
tion in the reliability analysis. Since now we can approximate the limit
state function around the design point 𝐺(𝒙) = ‖∇𝐺(𝒙∗)‖

(

𝛽 − 𝛼𝑇 𝒙
)

,
ariance of LSF, namely 𝑣𝑎𝑟(𝐺), can be written as follows

𝑎𝑟(𝐺) = ∇𝐺𝑇Σ𝑥𝑥∇𝐺 = (− ∥ ∇𝐺 ∥ 𝜶)𝑇 (− ∥ ∇𝐺 ∥ 𝜶)

=∥ ∇𝐺 ∥2
(

𝛼1
2 + 𝛼2

2 +⋯ + 𝛼𝑛
2) , (36)
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Fig. 8. Model calibration of Carroll model for Styrene-butadiene rubber (a) prediction (b) plausible models.
Fig. 9. GP model for Polyurethane (a) prediction (b) plausible models.
T
S

where Σ𝑥𝑥 is the covariance matrix. In Eq. (36), we define the contribu-
tion of each random variable in the variance of the limit state function
through 𝛼𝑖2 with higher values of |𝛼𝑖| representing larger influence of
their associated random variables. If 𝛼𝑖 > 0, the random variable is
called the load variable, and is called the resistance variable otherwise
when 𝛼𝑖 < 0. So, whenever the FORM analysis is carried out to derive
𝜸, one can determine the significance of random variables, which has
the greatest interference in the probability of failure. To consider the
correlation between the variables, the importance vector 𝜸 is defined
as follows

𝜸 =
𝜶𝒋𝒙∗ ,𝒘∗𝐃

‖𝜶𝒋𝒙∗ ,𝒘∗𝐃‖
, (37)

here 𝐣𝑥,𝑤 = 𝐃𝐋. Here, 𝐃 is the derivation matrix in 𝝈 = 𝐃𝐑𝐃 where 𝐑
s the correlation coefficient matrix, and 𝐋 is derived as the Cholesky
actor of the upper triangle of 𝐑, namely 𝐋 = 𝑐ℎ𝑜𝑙(𝐑).

. Results

.1. Experimental tests

A uni-axial test is implemented for three materials, silicon,
olyurethane black, and Styrene-butadiene rubber. Four specimens
ere used to characterize each failure point used in the experimental
ata. Our tests were mostly focused on uniaxial tensile tests performed
n Dumbbell specimen with specifications given in ASTM D412-Die C
nd shown in Fig. 4.
8

able 1
tatistical characteristics of Carroll model for Polyurethane.
Parameters Statistical

distribution
Mean value Standard

deviation
Coefficient
of variation

W1 Normal 0.61025 0.01555 0.0255
W2 Normal −5.4944e−7 0.9059e−7 0.1648
W3 Normal 0.09649 0.23623 2.4481

Mechanical test. Quasi-static tensile tests were conducted on a uni-
axial universal Testing Machine (TestResources 311 Series Frame).
Samples were clamped between two grips and stretched at the rate
of 50 mm/min at room conditions to minimize the visco-elastic ef-
fects(i.e. 22 ± 2 ◦𝐶, 50 ± 3%𝑅𝐻). Measurement is conducted using an
external extensometer to avoid clamp slippage. In Fig. 5, stretch–stress
curves are depicted for all samples and as illustrated, the samples fail-
ure were very close to each other in small deformation. As deformation
increases, the evolution of defects in the samples leads to uncertainty
in the material’s response.

Parametric stochastic constitutive model. Model calibration is conducted
based on Bayesian regression to demonstrate UQ of Carroll model
with respect to the behavior of three elastomeric compounds, silicon,
polyurethane, and styrene-butadiene rubber (SBR). MLE and MAP of
the Carroll model were derived for three materials, while several plausi-
ble models of MAP are plotted in Figs. 6, 7, and 8 for polyurethane and
Silicone, respectively. Similarly, Table 1, 2, and 3 show the stochastic
parameters for Silicone, Polyurethane, and Styrene-butadiene rubber.

Non-parametric stochastic constitutive model. To see the non-parametric
model’s performance, a GP analysis is conducted on these data sets
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Fig. 10. GP model for Silicone (a) prediction (b) plausible models.
Fig. 11. GP model for Styrene-butadiene rubber (a) prediction (b) plausible models.
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Table 2
Statistical characteristics of Carroll model for Silicone.

Parameters Statistical
distribution

Mean value Standard
deviation

Coefficient
of variation

W1 Normal 0.173568 0.002315 0.013341
W2 Normal −8.43e−8 3.492e−8 0.414199
W3 Normal −0.206981 0.028986 0.140046

to find hyper-parameters of the kernel in GP. We maximized log-
likelihood based on L-BFGS method for two experimental data sets.
Figs. 9, 10, 11 show the results for Polyurethane, Silicone, and Styrene-
butadiene rubber respectively. Besides, several plausible models are
plotted based on obtained hyperparameters. Data is more scatter in
larger deformation due to the breakage of some samples and cumulative
errors with stretch increasing. Note that we employed homoscedastic
noise in the case study and this is the reason which initial stretch of
curves have uncertainty. To make it zero, we can use heteroscedas-
tic sparse Gaussian processes which Bessa et al. (2019) and Zhang
et al. (2019) employed to design a metamaterial and quantify the
uncertainty.

Probability of failure. For failure analysis, the first step is creating the
limit state function 𝑔(𝑾 ). Based on the previously derived stochastic
constitutive model, 𝑔(𝑾 ) can be written as

𝑔(𝑾 ) = 𝜎𝑈 −
(

2𝑊1 + 8𝑊2
(

2𝜆−1 + 𝜆2
)3 +𝑊3

(

1 + 2𝜆3
)− 1

2

)

(

𝜆 − 𝜆−2
)

,

(38)
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able 3
tatistical characteristics of Carroll model for Styrene-butadiene rubber.
Parameters Statistical

distribution
Mean value Standard

deviation
Coefficient
of variation

W1 Normal 0.671017 0.01242 0.01851
W2 Normal 3.5265e−6 1.567e−6 0.4443
W3 Normal −0.3385 0.03127 0.09237

where we consider 𝜆 = 5.861 for Polyurethane predictions, 𝜆 = 4.815
or Silicone, and 𝜆 = 3.91 for Styrene-butadiene which are the mean of
tretch in experimental datasets. Note that the selection of stretch for
ailure probability calculation depends on how much we stretch the
aterial.

Failure distribution pattern for Polyurethane, Silicone, Styrene-
utadiene can be best represented by 𝜎𝑈 =  (6.19, 0.16), 𝜎𝑈 =
(5.9, 0.237), and 𝜎𝑈 =  (5.45, 0.145) respectively. Those distributions

ere derived based on the data of four samples at failure points (i.e., a
istribution analysis on failure points of four samples in each case).
able 4 shows the results of FORM analysis and CMC for Polyurethane,
ilicone, Styrene-butadiene rubber. Also, Figs. 12, 13, and 14 Show
he details of CMC simulation and distribution of 𝑔(𝑾 ) analysis for
olyurethane, Silicone, Styrene-butadiene rubber, respectively.

Accordingly, the derived failure probability exhibits the probability
f material failure at any specific stretch values. To show the im-
ortance of the random variables in failure probability, a sensitivity
nalysis has also been conducted, and the results for Polyurethane,

ilicone, and Styrene-butadiene are shown in Fig. 15.
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a

d

Fig. 12. Polyurethane: (a) coefficient of variation for failure probability respect to number of simulation (b) probability of failure respect to number of simulation (c) LSF
distribution analysis.
Fig. 13. Silicone: (a) coefficient of variation for failure probability respect to number of simulation (b) probability of failure respect to number of simulation (c) LSF distribution
nalysis.
Fig. 14. Styrene-butadiene: (a) coefficient of variation for failure probability respect to number of simulation (b) probability of failure respect to number of simulation (c) LSF
istribution analysis.
Fig. 15. Importance analysis (a) for Polyurethane (b) for Silicone (c) for Styrene-butadiene.
6. Concluding remarks

This paper developed a Bayesian surrogate constitutive model to
estimate failure probability of elastomers. First, a comprehensive uncer-
tainty analysis was conducted and validated at multiple stage, including
a parametric Bayesian inference on Caroll model which was calibrated
based on two methods (MAP and MLE), a non-parametric Gaussian
process which is based on squared exponential kernel. Both models
were trained and validated with respect to two sets of our experiments
10
on silicon- and polyurethane-based elastomers to demonstrate their
capabilities in explaining uncertainty propagation. Next, For these
data sets, failure probability analysis was performed using the First
Order Reliability Method (FORM) by constructing a limit state function
based on the stochastic constitutive model at the failure point. Crude
Monte Carlo (CMC) simulation was used concurrently to estimate the
limit state probabilities in order to determine the validity of adopting
FORM. Finally, the importance of Carroll model parameters in pre-
dicting failure probability was demonstrated using sensitivity analysis.
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Table 4
Probability of failure for Polyurethane, Silicone, Styrene-butadiene based on FORM and
CMC.

Method PUBa DCb SBRc

FORM CMC FORM CMC FORM CMC

𝑃𝑓 (%) 10.185 9.725 5.577 5.671 2.2903 2.3235
𝛽 1.2710 1.2973 1.5912 1.5829 1.9971 1.9910

aPolyurethane.
bSilicone.
cStyrene-butadiene.

The developed framework is generic and can be implemented on any
combination of data and constitutive model.
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Appendix. Continuum mechanics

Consider that 𝐗 and 𝐱 are the reference and current coordinates
of an element under deformation 𝐱 = 𝐷(𝐗) in a body which 𝐷 is a
mapping function and 𝐅 = 𝜕𝐱

𝜕𝐗 known as deformation gradient. We
an define right Cauchy-green deformation tensor as 𝐂 = 𝐅𝑇𝐅. 𝜆𝑘 and
𝜆2𝑘, 𝑘 = 1, 2, 3, are eigenvalues of 𝐅 and 𝐂, respectively. The principal
invariant of 𝐂 mentioned as

𝐈1 (𝐂) = 𝑡𝑟 (𝐂) , 𝐈2 (𝐂) =
1
2
(

(𝐈1(𝐂))2 − 𝑡𝑟(𝐂2)
)

,

𝐈3 (𝐂) = det (𝐂) .
(A.1)

The strain energy function can be defined as

𝛹 = 𝛹 (𝐂) = 𝛹
(

𝐈1, 𝐈2, 𝐈3
)

. (A.2)

First Piola–Kirchhoff stress tensor 𝐏 can be written as

𝐏 = 𝜕𝛹
𝜕𝐅

− 𝑝𝐅−𝑇 . (A.3)

For incompressible elastomers, det𝐅 = 1 and p is a Lagrange
ultiplier that arises from the assumption of incompressibility.
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