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ABSTRACT

Material parameters related to deterministic models can
have different values due to variation of experiments outcome
. From a mathematical point of view, probabilistic modeling can
improve this problem. It means that material parameters of con-
stitutive models can be characterized as random variables with
a probability distribution. To this end, we propose a constitutive
models of rubber-like materials based on uncertainty quantifica-
tion (UQ) approach. UQ reduces uncertainties in both computa-
tional and real-world applications. Constitutive models in elas-
tomers play a crucial role in both science and industry due to
their unique hyper-elastic behavior under different loading con-
ditions (uni-axial extension, biaxial, or pure shear). Here our
goal is to model the uncertainty in constitutive models of elas-
tomers, and accordingly, identify sensitive parameters that we
highly contribute to model uncertainty and error. Modern UQ
models can be implemented to use the physics of the problem
compared to black-box machine learning approaches that uses
data only . In this research, we propagate uncertainty through
the model, characterize sensitivity of material behavior to show
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the importance of each parameter for uncertainty reduction. To
this end, we utilized Bayesian rules to develop a model consid-
ering uncertainty in the mechanical response of elastomers. As
an important assumption, we believe that our measurements are
around the model prediction, but it is contaminated by Gaussian
noise. We can make the noise by maximizing the posterior. The
uni-axial extension experimental data set is used to calibrate the
model and propagate uncertainty in this research.

INTRODUCTION

Uncertainty quantification (UQ) is to consider variation of
response of the material in different samples, which results in
bounds on the behavioral prediction of the system. UQ plays a
pivotal role in modeling under the framework of continuum me-
chanics. UQ participates in the detection of uncertainty sources
and can determine a mathematical model to calculate the error
bounds. Usually, in computational modeling, predictions are
deterministic due to deterministic methods that researchers use
such as least square for parameter calibration. In these methods,
a single estimate is calculated based on available data of the sys-
tem. Although, in real problems, model prediction for a specific
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group of parameters and different combinations of parameter val-
ues of model may have similar results. So, one of these com-
binations is determined in a deterministic approach. However,
probabilistic modeling can calculate different combinations of
parameters in the form of the probability distribution for model
prediction through the propagation of uncertainty. Hence, prob-
abilistic evaluation of computational models can help users to
find a model that prediction and input parameters are indepen-
dent. Another importance of UQ is in the context of safety factor
in design that is important, is failure of material. Also, a better
estimation of safety factor and cost reduction is the result of gen-
erating confidence bounds in probabilistic modeling. The source
of uncertainty, generally, are categorized based on their capabil-
ity in uncertainty reduction, known as “epistemic” which refers
to reducible error due to lack of knowledge and we can reduce
it by cost and “aleatory” which refers to inherent error of sys-
tem and we cannot or do not know to reduce. The goal of UQ
in computational modeling is the calculation of uncertainty for
modeling and prediction. So, quantification process over all un-
certainties, in this filed, is uncertainty quantification (UQ) and
uncertainty propagation (UP) [1].

Two statistical views, usually, evaluate quantification pro-
cess; Frequentist view defines probability during a long-term
observation based on rate of occurrence, and Bayesian view
which considers degree of belief based on the combination of
prior knowledge and new data for probability. So, in Frequen-
tist view, parameters are fixed random variables. However, in
Bayesian view, parameters are random variables with data. Al-
though wrong prior knowledge can mislead the model, the true
definition is helpful in statistical inference. In UQ analysis, un-
certainty sources can be categorized because of (1) inherent un-
certainty of physical system (2) model parameter uncertainty due
to lack of knowledge (3) propagated uncertainty (4) model struc-
ture uncertainty because of lack of physics in model. Model un-
certainty is the hardest one among all of these sources due to lim-
ited knowledge and inaccurate experimental data. On the other
hand, one of the attractive fields in computational modeling is
modeling of hyper-elastic materials such as elastomers.

Elastomer is a wide meshed cross-linked polymer that be-
haves entropically elastic and does not show reversible deforma-
tion. They are usually classified as filled and unfilled categories.
Fillers, in most cases, can reinforce polymers. They increase the
stiffness of elastomers; However, they reduce the extensibility of
the polymer chains. Manner of elastomers and rubber-like mate-
rials shows non-linear behavior, especially during large deforma-
tion. Hyper-elastic constitutive models describe the behavior of
them in small and large deformation [2—4]. Stress-strain relation
is derived from the strain energy function. Hence, researchers
spare no efforts to find a strain energy function that captures the
behavior of elastomers under different state of loading. Devel-
opment of constitutive models for cross-linked polymers is hin-
dered by both incompleteness of theoretical approach and limi-
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tation in experiment observation. From past decades until now,
researchers proposed many models which all of them is lack of
uncertainty and are based on deterministic approaches that cause
we cannot consider confidence bounds to estimate response of
model or reduce uncertainty of system.

There are several hyper-elastic constitutive model from last
eighty years. in 1999, Yeoh [5] proposed a new cubic strain
energy function based on first invariant. Ogden [6] proposed a
model for large deformation in order to remove isotropic and in-
compressiblity assumptions from constitutive model. James et al.
[7], in their work, proposed two analytic forms of strain energy
function for isotropic and incompressible materials. Lambert-
Diani and Rey [8], in 1998, proposed a family of functions
of strain energy associated with hyper-elastic behavior of elas-
tomers. After that, Pucci and Saccomandi [9] reformed Gent
model that has a limitation on chain extensibility. They proposed
a model that with minimum number of coefficient can capture
Treloar data [10]. After one year, Beda and Chevalier [11] com-
bined Gent model and Ogden model to capture experimental data
of behavior of rubber like materials. Farhangi et al. [12, 13] in-
vestigated the effect of fiber. Valiollahi et al. [14, 15] proposed a
stretch-based large deformation method for hyperelastic materi-
als. In 2009, Dargazany et al. [16] proposed a micro-mechanical
model that captures inelastic behavior of elastomeric materials
such Mullins effect, permanent set and anisotropy. Mohammdai
and Bahrololoumi studied on aging of these materials based on
this model [17-20]. In 2011, Kroon [21] proposed a model based
on eight-chain model by adding some topological constraint of
moving space of chain. They showed the performance of their
model with experimental data set. In 2016, Nkenfack et al.
[22,23] proposed a new model by adding an integral density and
an interleaving constraint part to eight-chain model. Shojaeifard
et al. [24,25] proposed a viscoelastic model and its framework
in FEM. Ghaderi et al. [26] proposed a physic-informed neural
network model which captures all different state of inelasticity in
cross-linked polymer. All of introduced model , in below, have
a deterministic approach. Recently, Brewick and Teferra [27]
investigated on uncertainty quantification of constitutive model
for brain tissue. They consider Ogden model as the reference
model in their work. Kaminski and Lauke [28], in 2018, worked
on probabilistic aspects of rubber hyper-elasticity. They consid-
ered some basic models, from Neo-Hookean to Arruda-Boyce,
and showed probabilistic characteristics of them such as expec-
tation, variance, skewness and kurtosis. Also, in last year, Mihai
et al. [29] published a paper on uncertainty quantification of elas-
tic materials.

This work presents a parametric stochastic model based on
Bayesian model calibration. UQ reduces uncertainties in both
computational and real world problems. In this study, we prop-
agate uncertainty through the Caroll model. we believe that our
measurements are around the model prediction, but it is contam-
inated by Gaussian noise. We can make the noise by maximizing
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the posterior. We train and predict some values based on experi-
mental data set.

The paper is outlined as follows. Experimental test and re-
sults are explained in detail in the first section. In section 2, para-
metric stochastic constitutive model based on Bayesian model
calibration are mentioned. Results are showed in section 3. Fi-
nally, a conclusion is provided in last section.

Parametric Constitutive Model
Continuum Mechanics

Consider that X and x are the reference and current coor-
dinates of an element under deformation x = D(X) in a body.
F= %‘( known as deformation gradient. We can define right
Cauchy-green deformation tensor as C = F'F. 2; and A2,
k=1,2,3, are eigenvalues of F and C respectively. The prin-
cipal invariant of C mentioned as

((L(C))* —1r(C?)), €9

Strain energy function can be defined as a function of principle
invariants as

lP:lP(C) :lP(IlvlzaIf;) 2

First Piola-Kirchhoff stress tensor P for incompressible materials
can be written as

¥ T
P= 5F pF . 3)
For incompressible elastomers, detF = 1 and p is a Lagrange
multiplier that arise from the assumption of incompressibility.
Here, the hyper-elastic response is characterized by Caroll model
[30]. The strain energy density function and uni-axial stress for
this model mentioned as follow

W = wiI +walf +wi/I. )

By substituting Eq. 4 into 3, one can drive the stress in the load-
ing direction of uni-axial tension test as

PUT = 20y 4+ 8w> (2271 +22)° s (1424%) 2| (A —272)
5)

where A is principal stretch in the loading direction, and wy,w»
and w3 are the model parameters.
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Stochastic Modeling
In a model calibration problem, we have n observation and
n outputs consisting of

Arn] = [A, A5 An], pra] = [p1s P2, pn]. (6

Any model can connect inputs A to p through the use of some
parameters W as follow

P=fOsW) = Yo wio(2) = Wia(h), ()
=1

which j shows the index of parameter, ¢ is basis function and w
is the parameter. Caroll model which mentioned in last part is a
model with 3 parameters and 3 basis functions. In order to do a
stochastic model calibration, we are using Bayesian method.

Bayesian Methodology To calculate joint probability
distribution of model parameters that shows uncertainty associ-
ated with experimental data, Bayesian model calibration is cre-
ated. In contrast to least square method that determines best pa-
rameters for fitting and does not provide any information regard-
ing parameters’ probability, Bayesian method can shows uncer-
tainty of model with stochastic parameters [31]. This method is
based on Bayes conditional rule of probability, which is written
as

P (D|W,M)P(W|M)

P(W|D,M) = 5 D) :

®)

which W is the vector of unknown model parameters, M is cho-
sen model and D is set of data. P(W|M) known as prior joint dis-
tribution and shows degree of believe to the parameters before
we know the data. & (D|W,M) is likelihood joint distribution
which describes the observation probability of what we have ob-
served. & (W|D,M) mentions posterior distribution. %?(D|M)
acts as a normalizer, which mentioned as follow

P(DIM) = /W@(D|W7M)<@(W|M)dw. ©)

There are two main method for model calibration, Maxi-
mum Likelihood Estimation and Maximum Posterior Estimation.
These methods are explained in next subsections in detail.

Maximum Likelihood Estimation (MLE) In this
method, in order to find parameters, measurement process is
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modeled by the likelihood function. We believe that our mea-
surement is around the model prediction, but it is contaminated
by Gaussian noise. Hence, likelihood function is as follow

P(p|A,W,0) = (p|W',06%), (10)

Eq. 10 should be maximized to find model parameters and the
noise. So, one can write

Wik, O p = argmax {log[Z (p|A,W,0)]}.  (11)

In veiw of Eq. 11, the solution for Wy, g and oy g can be
calculated as

Wae = (9" 0)"'¢"p,
o2
oy = ||¢WM2E pl” (12)

Hence, after solving the problem, we can calculate median and
bounds with two standard deviation of model parameters as fol-
lows

m(d) = W;lLEd’O*)»
l()L) m(l) *ZGMLE, (13)
u(A) ~m(A)+20mLE-

Q

Maximum Posterior Estimation (MPE) In this
method, in order to find parameters, measurement process is
modeled using the posterior. We believe that our measurement
is around the model prediction, but it is contaminated by Gaus-
sian noise. So, we have the same likelihood as Eq. 10. The
difference of this method with last method is that here posterior
should be maximized instead of likelihood function. We model
the uncertainty in model parameters using a prior. Before we
see the data, we believes that the weights are around zero with a
given precision as follow

P(W|a) = N (W]0, 0 'T)

(5)  exp(=SIWIF), (4

which o acts as a regularizer that kills overfitting. The posterior
summarizes our state of knowledge after observing data, if we
know the precision parameter and the noise variance. We can
write posterior for our problem based on Eq. 8 as follow

__ 2((pIA,W,0)Z(W|a)
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So, solving optimization problem to maximize posterior can cal-
culate Wyspg as follow

WMPE:argma)dog'@(pMﬁW7G)'@(W|a>7 (16)

if likelihood and prior are Guassian, we can say

1 o
log 7 (p|A,W,0) = =55 [loW —p|* = Z[W[*  (7)

solution for Wy,pr can mentioned as

Wype = (-6 20T ¢ +al) o7 p. (18)

To make new prediction with new inputs, we can use as fol-
low equation

‘@(pnew‘lneMHWMPEaG):JV(pnew|W{4PE¢()'neW)>62)' (19)

Median prediction, lower bound and upper bound are calcu-
lated as follow

I(A)=m(A)—20, u(d)=m(L)+20.
(20)
Also, posterior function is written based on multivariate nor-

mal distribution as follow

m(A) = Wi{/IPE‘P(;L);

P WA,p,0,a) = (W|m,S) =

det(27S) 2 exp —%(W—m)TS”(W—m) ; ey

which m = 672S¢” p is mean, and (627 ¢ +aI)~! is co-
variance matrix.

Results
Experimental Tests

In this part, measurement method for hyper-elastic defor-
mation, setup and techniques are described. A uni-axial test is
implemented for two materials, silicon and polyurethane based
adhesives. Four specimens are used for each material.

From a same batch, each sample had a dumbbell shape.
Each sample was cast based on standard dimension (ASTM
D412- Die C) in Fig. 1.
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FIGURE 2. Stretch Stress results of mechanical tests for a) DC b)
PUB

Quasi-static tensile tests were conducted on a uni-axial uni-
versal Testing Machine (TestRecources 311 Series Frame). Sam-
ples are clamped between two grips with a loading at rate of
25mm/min at room conditions (i.e. 22 +2°C,50 + 3%RH ).
Measurement is conducted by an external extensometer. The
stress-strain curves of each samples for DC and PUB is shown
in Fig. 2.

Model Calibration and Prediction

In order to show uncertainty quantification and prediction of
Caroll model with two observed date set, a model calibration is
conducted by MPE and MLE methods. Fig. 3 and Fig. 4 show
the results for PUB and DC respectively.

CONCLUSION
In this paper, we introduced a probabilistic constitutive
model for cross-linked polymers. This model is based on the

V012T12A006-5

MPE Prediction
----- MLE Prediction @) D4
6 ® Observation o ‘. ®|
Two standard deviations 0
7 8
5 .‘
g Y
S 4
—_— al
»
% s 8
E=3
2 8
2 ‘
1 »
0
1 2 3 4 5 6
a) Stretch
7
— =+ weights sampled from posterior
. @ Observation
5 o
= 2
% 4
P
3 P
g A
2
2
1
0
1 2 3 4 5 6
b) Stretch

FIGURE 3. Model calibration of Caroll model for PUB a) prediction
b) plausible models

Bayesian model calibration such that we maximize likelihood
and posterior to see the effect of them. We employed this ap-
proach and Caroll model to indicated performance and differ-
ence of MPE and MLE by using several experimental data on
PUB and DC in uni-axial. In the future, we are going to us a
non-parametric approach for proposing a probabilistic constitu-
tive model which shows epistemic and aleatory uncertainty.

Multivariate Normal Distribution

The probability density function (pdf) of a multivariate nor-
mal distribution, with a random vector A = (41, 4;, ..., 4, ), mean
w=(w,U,...,u,) and positive-definite covariance matrix S =
[0i;], can be written as

1 1
P(Al.S) = ————rexp —;A-w'ST A -p)|. 22

Multivariate normal distribution plays a crucial role in multivari-
ate statistical analysis and has wonderful properties. For exam-
ple, summation of some multivariate normal distribution has nor-
mal distribution and their product has log-normal distribution. If
u=0and S =1, it is called standard normal distribution. To gain
a better insight to the distribution a bivariate normal distribution
is showed in Fig. 5.
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