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A B S T R A C T   

Tolerances significantly affect the assemblability of components, the product’s performance, and manufacturing 
cost in mechanical assemblies. Despite the importance of product reliability assessment, the reliability-based 
tolerance design of mechanical assemblies has not been previously considered in the literature. In this paper, 
a novel method based on Bayesian modeling is proposed for the tolerance-reliability analysis and allocation of 
complex assemblies where the explicit assembly functions are difficult or impossible to extract. To reach this aim, 
a Bayesian model is developed for tolerance-reliability analysis. Then, a multi-objective optimization formulation 
is proposed for obtaining the optimum tolerances of components to minimize cost and maximize product per
formance. Subsequently, Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed for solving multi- 
objective optimization. Then, the enhanced TOPSIS is used to find the best optimum tolerances from the opti
mum Pareto solutions. Using the importance vector concept, a sensitivity analysis approach is used to determine 
the effects of design variables on the product reliability level and improve assembly reliability to the desired 
level. Finally, to exhibit the applicability of the proposed method, a transmission planetary gear system is 
considered, and the obtained results are compared and discussed for verification.   

1. Introduction 

Due to variations that arise during imperfect manufacturing pro
cesses, attaining the theoretical dimensions and consequently, the 
desired quality and performance may not be possible for a product. In 
such a condition, tolerance design which is a repeatable process con
sisting of tolerance analysis and tolerance synthesis steps plays a pivotal 
role in ensuring the feasibility and quality of mechanical assemblies at a 
lower cost. In general, the tolerance analysis involves evaluating the 
accumulation of the component tolerances on assembly dimensions or 
key characteristics in a mechanical system. The accumulation of 
component tolerances can affect assembly dimensions and key charac
teristics of mechanical assembly that should satisfy functional re
quirements. On the other hand, optimal tolerances should be assigned to 
individual dimensions considering the assemblability and functionality 
requirements in the tolerance synthesis stage. 

Over the last few decades, several studies have been conducted to 
develop the mathematical basis for tolerance analysis of mechanical 
assemblies. The most well-known tolerance analysis methods are 
reviewed in several studies [1–3]. Chase et. al. [4] presented the direct 

linearization method for tolerance analysis of mechanical assemblies 
using small kinetic adjustment of component dimensions. Laperrière and 
Lafond proposed a kinematics-based method for tolerance analysis and 
synthesis based on the Jacobian transform concept [5]. In this method, 
for tolerance modeling, all small displacements of geometric features are 
considered. This concept has been applied as a useful basis for devel
oping several tolerance analysis techniques in the literature (e.g. [5]). A 
study [6] proposed the TTRS model using rigid body motion and various 
concepts. Desrochers et al. [7] developed the unified Jacobian-Torsor 
model by combining the Jacobian and Torsor models. This method 
uses the Torsor model and Jacobian matrix to represent tolerances and 
tolerance propagation respectively. Khodaygan et al. (2010) proposed a 
feature-based tolerance analysis method that can cover all geometrical 
and dimensional tolerances that is compatible with GD&T standards [8]. 
Ziegler and Wartzack (2015) proposed an approach to adopt Sensitivity 
Analysis methods on current tolerance simulations with an interface 
module, which bases on level sets of constraint functions for parameters 
of the simulation model [9]. Khodaygan et al. (2011) developed an 
uncertainty–accumulation model for tolerance analysis of mechanical 
assemblies based on fuzzy logic [10]. Also, Khodaygan and Movahhedy 
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(2016) introduced a comprehensive method for the tolerance analysis 
based on the combined fuzzy- small degrees of freedom F-SDOF model 
[11]. In this method, rules and concepts in GD&T standards have been 
modeled. In another study, Khodaygan and Ghaderi (2019) developed a 
tolerance–reliability analysis method for quality control of mechanical 
assemblies based on Bayesian modeling [12]. In order to consider the 
parts’ form defects in tolerance analysis, Homri et al. [13] developed a 
Metric Modal Decomposition (MDD) method. By combining the Jaco
bian and skin model shape approaches, Liu et al. [14] proposed a novel 
method to model the actual toleranced surfaces. This method uses a 
Jacobian matrix and a skin model shape for tolerance transformation 
calculation and toleranced features description, respectively. Tlija et al. 
[15] presented a new model for the tolerance analysis of CAD assemblies 
considering the manufacturing defects and deformations. Further, Tlija 
et al. [16] developed a new method based on difficulty coefficient 
evaluation (DCE) and Lagrange multiplier (LM) methods to obtain an 
economical tolerance allocation. 

Corrado al. (2018) proposed a variational model for tolerance 
analysis which can deal with form tolerances and assembly conditions 
[17]. In another study, Polini and Corrado (2019) implemented the 
geometric reasoning in the model to simulate the manufacturing process 
and, then, the assembly sequence [18]. Also, Corrado and Polini (2020) 
conducted a comparative study on some tolerance analysis methods in 
the literature to compare the performance of methods [19]. Anwer et al. 
[20] investigated the fundamentals of the skin model at a conceptual, 
geometric, and computational level as well. Kong et al. (2020) proposed 
an approach for the tolerance design and process parameter analysis that 
can consider performance degradation [21]. Moreover, in this work, a 
reliability model with temperature-humidity-mechanical stress covari
ate has been presented. 

In literature, several methods of tolerance allocation have been 
developed based on the minimum manufacturing cost and the optimum 
performance of mechanical systems [22]. Huang and Shiau (2009) 
proposed an optimal tolerance allocation model considering the 
manufacturing cost, quality loss, and the design reliability index [23]. 
Balamurugan (2017) developed a concurrent tolerance allocation model 
to consider the degradation effects on the product’s quality character
istics [24]. To calculate the manufacturing cost more accurately, Lui 
et al. (2017) proposed to use different kinds of manufacturing cost 
functions for various components of the same assembly [25]. Natarajan 
et al. (2018) developed a bi-objective manufacturing tolerance alloca
tion model for an interchangeable assembly of shaft and hole [26]. 
Khodaygan (2019) proposed a multi-objective optimization formulation 
for optimum asymmetric tolerance design [27]. In other work, Kho
daygan (2019) developed an optimum tolerance design of compliant 
assemblies [28]. In this method, error propagation due to the flexibility 
of components in stages of the assembly process is estimated via the 
enhanced Method of Influence Coefficients (MIC). Liu et al. [29] pro
posed a modified quality loss function based on wear regularity. To 
model the loss function accurately, the change of main quality charac
teristics over service life was modeled nonlinearly. Then, the service life 
distribution determined based on the nonlinear wear regularity was 
used to improve the quality loss function. Hassani et al. proposed a 
Reliability-Based Robust Design Optimization method in presence of 
both aleatory and epistemic uncertainties [30]. The proposed formula
tion was presented as a multi-objective optimization problem. For 
approximating the mean and the variance of the design function, the 
univariate dimension reduction method was applied. Vahidi Mog
haddam et al. proposed an optimization method for fuzzy problems to 
consider the uncertainty of nonlinear systems [31,32]. 

One of the main ways to sure the desired performance of a product is 
the reliability assessment of the product. Uncertainties that arise in the 
design process or performance period of the product may affect the 
feasibility of the design and consequently decrease the product quality. 
Therefore, the constraints of the tolerance allocation problem can be 
reformulated in probabilistic forms to deal with existing uncertainties 

and ensure reliability. The major conclusion of methods that have been 
reviewed in the introduction section can be classified into the following 
categories:  

• Despite the importance of reliability assessment in the tolerance 
allocation of product, the tolerance - reliability design of mechanical 
assemblies has not been previously considered in the literature.  

• There is not a tolerance design method based on the experimental 
observations by Bayesian inference.  

• Conventional methods by expanding the assembly function into a 
Taylor series so that an inaccurate linear assembly function with 
constant coefficients is obtained. 

To overcome the above-mentioned gaps in the literature, in this 
study, a novel Bayesian-based sequential tolerance allocation and reli
ability assessment algorithm has been proposed for optimal tolerance 
synthesis of mechanical assemblies while ensuring the design reliability. 

The main novelties of the proposed method can be summarized as 
follows:  

(1) The reliability assessment is a significant task in the tolerance 
allocation of products. In this paper, unlike previous works in the 
literature, a reliability-based optimal tolerance design of me
chanical assemblies is proposed. In other words, using the ob
tained optimal tolerances from the proposed method can 
guarantee the design reliability of the system.  

(2) The proposed method can model the explicit assembly function of 
the complex assembly where it is difficult or impossible to find by 
existing conventional methods in the literature.  

(3) As a new approach, the proposed method takes into account the 
cost of quality control in addition to the cost of construction. 

To approximate the assembly function based on experimental ob
servations and decrease the meta-modeling uncertainties, which is one 
of the most common kinds of epistemic uncertainty, Bayesian linear 
regression has been used in the proposed algorithm. The tolerance 
allocation problem has been formulated as a bi-objective optimization 
problem contains minimizing total cost (summation of quality loss cost, 
manufacturing cost, rejection cost, and inspection cost) and minimizing 
the variation of functional characteristics. To solve the bi-objective 
tolerance allocation problem, the elitist Non-dominated sorting ge
netic (NSGA-II) algorithm has been used. Then, an enhanced Shannon’s 
entropy-based TOPSIS algorithm, as a multi-criteria decision tool, has 
been applied to find the best tolerances from the non-dominated mini
mum total cost and minimum functional characteristic variation solu
tions. Finally, the importance vector has been used to shift the tolerances 
toward the feasible region and increase the design reliability to an 
acceptable level. In this study, the first-order reliability method (FORM) 
using gradient-based improved Hasofer-Lind and Rackwitz-Fiesler 
(iHLRF) searching algorithm has been applied to assess the reliability 
for the best tolerances. So that using the proposed method improves the 
product reliability to achieve the desired level under minimum total 
product cost and maximum quality of the product. 

The remainder of this paper is organized as follows; In Section 2, the 
proposed approach is introduced. Then, the optimum tolerance design of 
a transmission planetary gear system as a case study is carried out by the 
proposed method in Section 3. Finally, the paper is finished by the 
conclusions in Section 4. 

2. Proposed method 

In this section, the proposed method for multi-objective reliability- 
based tolerance design based on Bayesian modeling is introduced. The 
proposed method can be presented in the following steps: 
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Step 1 Bayesian modeling of design function based on experimental 
observations 
Step 2 Formulating the multi-objective tolerance allocation problem 
Step 3 Extracting the non-dominated Pareto front of optimum tol
erances for components 
Step 4 Selecting the best optimum tolerances from the obtained 
Pareto front 
Step 5 Bayesian reforming optimum tolerances to improve the reli
ability of the assembly 
To a better understanding, the main stages of the proposed method in 
the following steps are explained in detail: 

2.1. Bayesian modeling of design function based on experimental 
observations 

In general, there are two main views in statistics: frequentist or 
classical statistics and Bayesian statistics [33]. Bayesian model as a more 
flexible tool to model complex relationships can be an accurate 
computational technique by taking into account previous information 
about the phenomenon under investigation where observations are 
limited. The general expression of design function by Bayesian linear 
regression model can be written as follows: 

ty = θ1tx1 + θ2tx2 + … + θntxn + ε, (1)  

where ty and txi denote tolerances of the functional variable (y) and 
design variables (xi), respectively. Also, θi indicates model parameters 
and ε is a model error. Based on the experimental data, the Bayesian 
design function model can be expressed as follows: 

t̃y = T̃θ̃ + ε̃, (2)  

where: 

t̃y =
[
ty1 , ty2 ,…, tym

]T
, T̃ =

⎡

⎣
tx11 ⋯ tx1m

⋮ ⋱ ⋮
txn1 ⋯ txnm

⎤

⎦, θ̃

= [θ1, θ2,…, θn]
T
, ε̃ = [ε1, ε2,…, εm]

T
, (3)  

where n is the number of parameters and m is the number of experi
ments. 

Let θ̃ = [θ1, . . . , θn]
T be all of the unknowns of model, which we 

continue to refer to as parameters, and ̃ty = [ty1 , . . . , tym ]
T the vector of 

observed data. Bayesian inference is based on the posterior probability 
distribution of θ after observing t, which is given by Bayes theorem [33, 
34]: 

P
′′
(θ|t) =

l(t|θ)
C(t)

P
′

(θ) (4)  

where P
′

and P ′′ are the prior and posterior probability, respectively. 
l(t|θ) is likelihood to indicate the compatibility of evidence t with the 
given θ. C(t|θ) is marginal likelihood that is the same for all possible θ 
being considered two key ingredients: the likelihood function l(t|θ) and 
the prior distribution P

′

(θ). The latter represents the probability beliefs 
for θ held before observing the data t. The normalizing constant (C(t)) 
can be written as follows: 

C(t) =

∫

l(t|θ)P
′

(θ)dθ (5) 

And also, the normalizing constant is the marginal probability of the 
observed data given the model, that is, the likelihood and the prior. 

It is worth to be noted that the proposed model can be applied for 
non-Gaussian data-set as well; however, according to the literature [35, 
36], tolerance data-sets usually follow the Gaussian distribution. In the 
case of non-Gaussian distribution, due to the property of Bayesian 

inference, model parameter θi have always the Gaussian distribution. 
However, the computational complexity in the data set with the 
non-Gaussian probability density functions may be more than the 
Gaussian probability density function. 

2.2. Formulating the multi-objective tolerance allocation problem 

In this section, optimum tolerance allocation is formulated in a 
multi-objective optimization problem. 

2.2.1. Formulating objective functions for the optimum tolerance allocation 
In this subsection, the total cost and the functional requirement are 

considered as the main objectives to formulate the tolerance allocation 
problem. 

2.2.1.1. Modeling the total cost function. In general, the optimum 
tolerance design procedure is a trade-off between performance and 
production cost. Therefore, for allocating optimum tolerances of com
ponents, the main sources of production cost should be modeled in terms 
of tolerances as the cost function of the multi-objective optimum toler
ance procedure.  

- Cost of quality reduction 

To take into account the additional cost due to quality reduction, the 
concept of the quality loss function can be used. In general, the quality 
loss function refers to cost due to the reduction of quality loss where the 
quality variable (̃ty) has deviated from the target value (̃tyd ) [25]. The 
quality loss function can be expressed in a quadratic form as below: 

QLC(y) = k
(

t̃y − t̃yd

)2

, when k =
A
Δ2, (6)  

where k indicates loss coefficient, A is the cost increment due to a de
viation (Δ) from the target value. 

For statistical tolerance analysis, the root sum square (RSS) approach 
can be applied under two assumptions; design variables are independent 
under normal distribution [10,37]. Referring to Eq. 1, the Bayesian 
linear regression model can be rewritten in the RSS-based form as 
follows: 

ty =

{
∑n

i=1
(θitxi )

2

}1/2

. (7) 

Substituting Eqs. 7 into 6, quality loss cost can be rewritten as 
follows: 

QLCtransemile = K

{{
∑n

i=1
(θitxi )

2

}1/2

− tyd

}2

(8)    

- Manufacturing cost 

In the literature, several cost-tolerance models for tolerance alloca
tion of mechanical assemblies have been introduced [38]. 

C = C0 +
A
tk, (9)  

where C0 is the constant cost of manufacturing setups, A and k denote 
cost coefficient and cost exponent in the manufacturing a dimension 
with tolerance t, respectively. Accordingly, the total manufacturing cost 
of all effective dimensions can be obtained below: 

MC =
∑n

i=1

{

C0 i +
Ai

tki
i

}

(10)   
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- Rejection cost 

In this study, produced components have a normal distribution with 
mean μ and the standard deviation of σ. As a result, under normality 
assumption in quality control, i.e. N (μxi

,σxi ), the probability of product 
rejection or the fraction of rejections can be estimated follows: 

FRxi = 1 −
1

σxi

̅̅̅̅̅
2π

√

∫xi
u

xi l

e
−
(xi − μxi )

2

2σ2
xi dxi. (11) 

The cost of product rejection can be estimated as the fraction of the 
manufacturing cost of the component which is called reject fraction 
(RF). Under normality assumption, components tolerances can be 
expressed based on the K-sigma concept (txi = Kσxi : K = 1, 2, 3). The 
cost of product rejection of component xi based on Eqs. 10 and 11 can be 
calculated as follows: 

RCxi = FRxi × MCxi =

⎛

⎜
⎝1 −

1
σxi

̅̅̅̅̅
2π

√

∫+Kσxi

− Kσxi

e
− 1

2

(
txi
σxi

)2

dtxi

⎞

⎟
⎠

{

C0 i +
Ai

(txi )
ki

}

.

(12) 

The cost of product rejections for all components of assembly can be 
computed as below: 

RCtransmill =
∑n

i=1
RCxi . (13)    

- Inspection cost 

The inspection costs are dependent on several factors such as the 
inspection’s methods, partial inspection, or total inspection. In this 
study, the inspection cost of each component is assumed constant cost 
(ICxi ). Therefore, the total inspection cost of all components can be 
expressed as follows: 

IC =
∑n

i=1
ICxi , (14)  

where n indicates the number of components of the assembly.  

- Total cost function 

According to all costs calculated, total cost includes the cost of 
quality reduction, manufacturing costs, rejection cost, and total in
spection costs can be expressed as: 

TC = RC + MC + QLC + IC. (15)    

- Modelling functional characteristic in mechanical assembly 

The variation of functional characteristic can be defined as the 
greatest deviation from inference received by the designer in tolerance 
allocation as follows: 

Yυ = f
(

t̃x1 ,…, t̃xn

)

. (16)    

- Quality requirements of components 

To control the quality requirements of components, the process 
capability concept can be applied [39]. The index CP is defined as 

CP =
USL − LSL

6σ , (17)  

where LSL and USL are lower and upper specification limits of effective 
dimension x, respectively. Based on the 3-Sigma concept (t = 3σ), 
proper constraint to control quality requirement of components in op
timum tolerance design can be rewritten as follows [39]: 

CPi =
USLi − LSLi

6σ ≥ Cmin i = 1, 2,…, n, (18)  

where ti indicates the tolerance of competent dimension i. 

2.2.2.2. Formulating problem in multi-objective optimization form. Ac
cording to modeled objective and cost functions, optimum tolerance 
allocation problem can be formulated as a multi-objective optimization 
problem as follows: 

Min TC = RC + MC + IC + QLC

= K

{{
∑n

i=1
(θitxi )

2

}1/2

− tyd

}2

+
∑n

i=1

{

C0 i +
Ai

(txi )
ki

}

+
∑n

i=1

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝1 −

1
σxi

̅̅̅̅̅
2π

√

∫+Kσxi

− Kσxi

e
− 1

2

(
txi
σxi

)2

dtxi

⎞

⎟
⎠

{

C0 i +
Ai

(txi )
ki

}
⎫
⎪⎬

⎪⎭
+
∑n

i=1
ICxi ,

Min Yv = f
(

t̃x1 ,…, t̃xn

)

, (19)  

subject to 

CPi =
ULi − LLi

2ti
≥ 1 i = 1, 2,…, n. (20)  

2.3. Extracting the non-dominated Pareto front of optimum tolerances for 
components 

To determine optimum tolerances in the Pareto front form, the multi- 
objective optimization problem should be solved by a proper approach. 
In this study, Non-dominated Sorting Genetic Algorithm II (NSGA II), 
which was developed [40], as a powerful tool for solving multi-objective 
optimization problems (Eq. 19) is applied. 

2.4. Selecting the best optimum tolerances from the obtained Pareto front 

Optimum Pareto front obtained from solving multi-objective opti
mization problem (Eq. (19)) contains several sets of optimum tolerances 
that designers can select in the tolerance design stage. Decision-making 
for choosing the most preferred of optimum tolerances is not an easy and 
straightforward task. This challenge can be resolved by using a TOP
SIS–based method developed [41]. 

In the proposed method, for choosing the most preferred of optimum 
tolerances Shannon‘s Entropy-based TOPSIS technique is applied [42]. 
According to this technique, the most preferred optimum solution can be 
chosen from the Pareto front by sorting optimum solutions with respect 
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to closeness coefficients (C∗
i ). 

2.5. Bayesian reforming optimum tolerances to improve the reliability of 
the assembly 

In the last step of the proposed method, the assembly reliability 
under optimum tolerances should be improved. Accordingly, based on 
design requirements, the limit state function(s) should be defined first. 
In this study, the limit state function (LSF) for the product at tolerance 
(̃tx) is defined as follows: 

g
(

t̃x

)

= tc − t̃y, (21)  

where t̃y represents the Bayesian regression model of design function 
(Eq. (2)) and tc is the critical limit of a performance characteristic of the 
product. Every reliability analysis method can be used to evaluate the 
assembly reliability in the proposed approach. In this study, the FROM 
using the gradient-based improved Hasofer-Lind and Rackwitz-Fiesler 
(iHLRF) searching algorithm [43] is utilized. If the obtained optimal 
tolerances do not satisfy the predefined reliability, importance vector 

should be used to increase the design reliability by shifting the toler
ances toward the feasible/safe region. 

An importance vector is a computational tool that determines the 
relative importance of the various parameters involved in the reliability 
analysis [44]. Importance vector α̃ is an acceptable vector for random 
variables in normal standard space. In the case of variables are corre
lated variables, vector α̃ has some error and for analyzing correlated 
random variables, the importance vector should be applied [44]. The 
normalized form as follows: 

γ̃ =
α̃T J̃

ty∗ ,̃tx∗
D

‖ α̃T J̃
ty∗ , t̃x∗

D ‖
, (22)  

where D is a diagonal matrix of standard deviations and J̃
ty∗ ,̃tx∗

=

∂̃ty∗/∂̃tx∗ . 
Accordingly, the normalized importance vector can be used to 

improve assembly reliability through the reforming procedure: 

t∗xR = t∗x −
(
γ(x) × t∗x

)
, (23)  

Fig. 1. The flowchart of the proposed method.  
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where t∗x and t∗x indicate optimum tolerance vector before and after the 
reforming procedure. γ(x) indicates normalized importance vector. 

For an overview of the main steps of the proposed method, its 
flowchart is illustrated in Fig. 1. 

3. Illustrative case study 

To demonstrate the applicability of the proposed method, a trans
mission planetary gear system as a case study from the literature [45] is 
considered (see Fig. 2). 

The schematic of the transmission planetary gear system including 
its kinematic characteristics (x1 to x12) is shown in Fig. 3. 

In this single-stage transmission system consisting of a drive and 
output housing, a drive and output shaft, a universal ring gear, three 
planets, and sun, sun movement relative to the planets results in 
excessive noise. Therefore, misalignment (ty) between drive and output 
shafts is considered a functional characteristic. 

In the following sub-sections, the main steps of the proposed method 
are implemented on the planetary gear system of a wind turbine. 

3.1. Constructing Bayesian regression model of assembly function based 
on experimental results 

In this study, the dimensional tolerances of the planetary gear system 
are modeled in the Normal distribution based on experimental obser
vations. To achieve this aim, the experimental dataset is extracted from 
the available data in Ref.[45] Then, based on the extracted dataset, the 

variable inferences are applied to determine the synthetic probability 
density function (PDF) for the independent variables txi . During this 
process, the synthetic PDF candidates are compared with known stan
dard PDF, and the most appropriate PDF is selected as the synthetic PDF. 
In this way, the synthetic PDF of all tolerances are determined. 

In general, there are two approaches for verifying the normality 
assumption; (1) Graphical approaches and numerical methods [46]. 
Graphical approaches as visual tools can present a visual comparison 
between the assumed distribution and the theatrical distribution in a 
plot (e.g. quantile (Q-Q) plots). For evaluating normality assumption, 
numerical methods can evaluate the normality assumption through 
descriptive statistics or statistical tests of normality (e.g. e 
Kolmogorov-Smirnov test) [47]. In this study for verifying the agree
ment of the distribution with the normality assumption, the quantile 
(Q-Q) plot as a graphical approach is used. 

According to Fig. 4, synthetic PDF of effective part tolerances are in 
good agreement with the normal distribution. 

Based on the proposed method, a Bayesian linear regression model 
can be created using experimental data. The corresponding Bayesian 
linear regression the model can be written as follows: 

ty = θ1tx1 + θ2tx2 + θ3tx3 + θ4tx4 + θ5tx5 + θ6tx6 + θ7tx7 + θ8tx8 + θ9tx9

+ θ10tx10 + θ11tx11 + θ12tx12 + θ13tx13 + ε, (24)  

where ty is misalignment and txi are tolerance of design variables. θi 

indicates model parameters and ε is a model error with the normal 
distribution. The mean and Coefficient of variation of ̃θ are computed as 

Fig. 2. Single-stage windmill planetary gear transmission system.  

Fig. 3. Schematic of transmission planetary gear system.  
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Fig. 4. Comparison of synthetic PDF of effective part tolerances and normal PDF.  

Fig. 5. Evaluating the normality of obtained Bayesian model.  
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follows:  

Accordingly, correlation matrix can be obtained as follows:  

Consequently, error distribution is obtained as follows: 

ε : N (0, 0.05227). (27) 

To evaluate the obtained Bayesian linear regression model, corre
sponding R-factor and normality can be computed. The computed R- 
factor of the Bayesian linear regression model is 0.992, which illustrates 
a good agreement between the obtained model and experimental data. 
Figs. 5 and 6, show extracted Bayesian model and distribution function 
of error (ε) are in good agreement with the normality assumption, 
respectively. 

Consequently, the relationship between misalignment as functional 
characteristic (ty) and effective tolerances (tx2 ) can be expressed as 
below 

ty = 0.321tx1 + 0.321tx2 − 0.321tx3 − 0.321tx4 − 0.321tx5 + 0.321tx6

+ 0.321tx7 + 0.321tx8 + 0.321tx9 + 0.096tx10 + 0.096tx11 − 0.321tx12

+ 0.003,
(28) 

Under the normality assumption, components tolerances can be 

expressed based on the 3-sigma concept: 

txi = 3σxi , i = 1, 2,…, 12, (29)    

- Estimating product reliability to meet functional requirements based 
on FORM method 

In this step, the assembly reliability to meet the quality requirement 
is obtained using FORM method. To reach this aim, limit state function 
can be considered as follows: 

g
(

t̃x

)

= 0.01 − y
(

t̃x

)

, (30)  

where ̃ty is obtained Bayesian linear regression model from Eq. 28 and 
quality requirement to control key characteristic i.e. the misalignment of 
planetary gear is 0.01. In the following, using the FORM method, the 
reliability level is 32.04%.  

- Multi-objective optimum tolerance design 

Referring to Eqs. (19) and (20), the multi-objective optimum 

Fig. 6. Evaluating the normality of the probability distribution function of error (ε).  

cov
(
θi,θj

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.016380 0.16616 − 0.15997 0.01531 − 0.05175 − 0.02529 − 0.09074 0.06446 0.00088 − 0.02072 − 0.03141 − 0.33313
0.016380 1 − 0.01592 − 0.08481 0.02629 0.01622 0.05610 0.03253 0.04447 − 0.1516 − 0.07248 − 0.07993 − 0.36494
0.16616 − 0.01592 1 − 0.10856 0.08433 − 0.0295 − 0.05445 0.04091 − 0.08369 0.06028 0.04739 0.07355 − 0.48427
− 0.15997 − 0.08481 − 0.10856 1 0.02950 0.09374 0.06673 − 0.07823 − 0.07903 − 0.00124 − 0.11480 − 0.00335 − 0.15613
0.01531 0.02629 0.08433 0.02950 1 0.00359 − 0.09785 − 0.17171 0.06081 − 0.00721 0.00481 0.00804 − 0.19590
− 0.05175 0.01622 − 0.0295 0.09374 0.00359 1 0.00587 0.00974 0.05155 0.08975 − 0.03292 0.15702 − 0.25234
− 0.02529 0.05610 − 0.05445 0.06673 − 0.09785 0.00587 1 − 0.00842 − 0.04732 0.06102 − 0.02861 0.02712 − 0.37342
− 0.09074 0.03253 0.04091 − 0.07823 − 0.17171 0.00974 − 0.00842 1 − 0.10776 − 0.02495 0.11675 0.03382 − 0.11827
0.06446 0.04447 − 0.08369 − 0.07903 0.06081 0.05155 − 0.04732 − 0.10776 1 0.02415 − 0.07944 − 0.00850 − 0.2721
0.00088 − 0.15161 0.06028 − 0.00124 − 0.00721 0.08975 0.06102 − 0.02495 0.02415 1 0.04439 0.08161 − 0.21868
− 0.02072 − 0.07248 0.04739 − 0.1148 0.00481 − 0.03292 − 0.02861 0.11675 − 0.07944 0.04439 1 0.04228 − 0.17138
− 0.03141 − 0.07993 0.07355 − 0.00335 0.00804 0.15702 0.02712 0.03382 − 0.00850 0.08161 0.04228 1 − 0.24247
− 0.33313 − 0.36494 − 0.48427 − 0.15613 − 0.19590 − 0.25234 − 0.37342 − 0.11827 − 0.2721 − 0.21868 − 0.17138 − 0.24247 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)   

E(θ̃) = [0.321, 0.321, − 0.321, − 0.321, − 0.321, 0.321, 0.321, 0.321, 0.321, 0.096, 0.096, − 0.321, 0.003]. (25)   
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tolerance design can be formulated for this study as follows:   

min ty = 0.003 + 0.321tx1 + 0.321tx2 + 0.321tx3 + 0.321tx4 + 0.321tx5

+ 0.321tx6 + 0.321tx7 + 0.321tx8 + 0.321tx9 + 0.096tx10 + 0.096tx11

+ 0.321tx12

(31) 

Subject to: 

CPi =
USLi − LSLi

2 txi

≥ Cmin, i = 1, 2,…, 12, (32)  

where all values of parameters in Eq. (31) are reported in Table 1. Also, 
in this study, the desired misalignment (ty) should be 0.01.  

- Obtaining the non-dominated Pareto front of optimum tolerances for 

components 

For solving the bi-objective optimum tolerance design problem (Eq. 
(31)), the NSGA II method is utilized. The parameters of NSGA-II are 
adjusted in this study as follows: population size: 190 individuals, gen
eration number: 2000 generations, crossover rate: 0.8, mutation rate: 
0.005. Solving bi-objective tolerance design problem (Eq. (31)) through 
NSGA-II results from Pareto front, which is shown in Fig. 7.  

- Selecting the best optimum tolerances from obtained Pareto front 

Using Shannon‘s Entropy-based TOPSIS method, 190 optimum so
lutions on the obtained Pareto front as candidates are sorted with respect 
to closeness coefficients (see Fig. 8). In this study, candidate 135 (S135) 
with the highest closeness coefficient (C∗ = 0.667) is selected as the 
most preferred optimum tolerances. Consequently, the most preferred 
optimum tolerances are reported in Table 2. 

Base on the best optimum tolerances set (S40), the optimum total cost 
is 57.056$ and the misalignment of the main shafts as a functional 
characteristic is 0.0101 mm and assembly reliability is 94.87%.  

- Bayesian reforming optimum tolerances to improve the reliability of the 
assembly 

Since the obtained reliability of assembly under the conventional 
tolerances is at a non-acceptable level (i.e. 32.03%), according to Eq. 
(22), the normalized importance vector of γ, which determines the 
importance of each tolerance in assembly reliability, can be computed as 
follows: 

Furthermore, to demonstrate the effectiveness of the proposed 
method, the obtained results from the proposed method and results of a 
traditional tolerance synthesis approach proposed in Ref. [49] are 
compared. Components tolerances of the gearbox assembly under 
different conditions (i.e. conventional tolerances, the optimum 

Table 1 
Statistical specifications of effective dimensions and parameters.  

Effective Dimension μx (mm) σx(mm)  LLxi (mm) ULxi (mm) C0  A  k  mx($) ICx($) Cmin  

x1  40 0.006 39.982 40.018 1.5 0.063 1 5 0.25 1.5 
x2  173.33 0.009 173.303 173.357 2 0.081 1 5 0.25 1.5 
x3  53.33 0.002 53.324 53.336 1.5 0.021 1 5 0.25 1.5 
x4  53.33 0.002 53.324 53.336 1.7 0.0198 1 5 0.25 1.5 
x5  53.33 0.002 53.315 53.345 2 0.018 1 5 0.25 1.5 
x6  20 0.001 19.997 20.003 1 0.012 1 5 0.25 1.5 
x7  173.33 0.009 173.303 173.357 2 0.081 1 5 0.25 1.5 
x8  53.33 0.002 53.324 53.336 1.3 0.022 1 5 0.25 1.5 
x9  40 0.006 39.982 40.018 1.5 0.063 1 5 0.25 1.5 
x10  80 0.005 79.985 80.015 2 0.045 1 5 0.25 1.5 
x11  40 0.005 39.985 40.015 2 0.045 1 5 0.25 1.5 
x12  60 0.009 59.973 60.027 1.7 0.089 1 5 0.25 1.5  

Fig. 7. The obtained Pareto front from NSGAII as trade-off frontier between 
normalized conflicting objectives space: total cost and functional characteristic. 

min TC = K
{{

(0.321tx1 )
2
+ (0.321tx2 )

2
+
(
− 0.321tx3

)2
+ (− 0.321tx4 )

2
+
(
− 0.321tx5

)2
+
(
0.321tx6

)2

+(0.321tx7 )
2
+
(
0.321tx8

)2
+
(
0.321tx9

)2
+
(
0.096tx10

)2
+ (0.096tx11 )

2
+ (− 0.321tx12 )

2
+ (0.003)2}1/2

− tyd

}2
+

∑12

i=1

{

C0 i +
Ai

(txi )
ki

}

+
∑12

i=1

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝1 −

1
σxi

̅̅̅̅̅
2π

√

∫+3σxi

− 3σxi

e
− 1

2

(
txi
σxi

)2

dtxi

⎞

⎟
⎠

{

C0 i +
Ai

(txi )
ki

}
⎫
⎪⎬

⎪⎭
+
∑12

i=1
ICxi   
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tolerances obtained from a traditional tolerance synthesis method pro
posed in [48], the optimum tolerances from the proposed method 
without and with the Bayesian reforming procedure) are reported in 
Table 2. 

Regarding the proposed algorithm, modification of mean values of 
component tolerances txi is performed in the regression model. After this 
correction, a new model of reliability analysis is carried out based on the 
proposed method. 

3.2. Verification and discussion 

To verify the proposed method, the Monte Carlo simulation method 
is the only method in the literature that both tolerance and reliability 
analysis can be applied [49]. Therefore, it can be an appropriate tech
nique for comparing with the proposed method. For verifying the ob
tained results of assembly reliability analysis from the proposed method, 
results of the proposed method are compared to results of Monte Carlo 
simulations. Therefore, the assembly reliability value of gearbox as
sembly is estimated using 300000 simulations of the Monte Carlo 

method at the same condition under initial and optimum tolerances. 
CDF, PDF, and the covariance (CoV) of the Monte Carlo simulations 
under initial and optimum tolerances are shown in Figs. 9 and 10, 
respectively. 

Compared to the obtained results of the proposed method and Monte 
Carlo simulation are reported in Table 3. According to the obtained 
results, the reliability of assembly based on the proposed method and 
Monte Carlo simulations under conventional tolerances for limit state 
0.01 is 32.03% and 33.43%, respectively. 

In other words, in this condition, the relative error of the obtained 
result from the proposed method in comparison to Monte Carlo simu
lations is 4.37%. Referring to Table 3, the relative errors of estimated 
reliability values under optimum tolerances before and after reforming 
procedure from the proposed method in comparing to Monte Carlo 
simulations are 0.26 % and 0.06%, respectively. Consequently, the re
sults of the proposed method under low computational time are in good 
agreement with the accurate results of the Monte Carlo simulation 
approach as a time-consuming and computationally intensive method. 

To illustrate the capability of the proposed method, design criteria 
under conventional tolerances and optimum tolerances without and 
with Bayesian reforming procedure are compared which are reported in 
Table 4. 

Referring to Table 4, the total cost under optimum tolerances from 
the proposed method before and after Bayesian reforming with respect 
to the conventional condition is reduced by 45.1% and 36.4%, respec
tively. Also, mean and standard deviation values (μy, σy) of functional 
characteristics under optimum tolerances without and with Bayesian 
reforming with respect to the conventional condition are tightened by 
(98.1%, 82.4%) and (99.9%, 100%), respectively. Accordingly, assem
bly reliability (R) under optimum tolerances from the proposed method 
before and after Bayesian reforming with respect to the conventional 
condition is improved by 196.2% and 211.9%, respectively. Referring to 
computational results, although using the proposed Bayesian procedure 
increases total cost by 15.8%, both functional characteristic(μy, σy), and 
the assembly reliability (R) are improved by (95.4%, 100%) and 5.3%, 
respectively. 

Moreover, the obtained results from the traditional tolerance syn
thesis method proposed in [48] are also presented in Table 4. Referring 
to Table 4, compared with the tolerance synthesis approach in Ref. [48], 
the total cost is decreased by 24.67% and 12.79% in the proposed 
approach before and after Bayesian reforming, respectively. This is 

Table 2 
Component tolerances of the gearbox assembly.  

Tolerances Conventional 
tolerances 

Optimum 
tolerances from 
Muthu method  
[48] 

Optimum tolerances from the 
proposed method 
without 
Bayesian 
reforming 

with 
Bayesian 
reforming 

tx1  0.0089 0.0068 0.0020 0.0014 
tx2  0.0163 0.0140 0.0090 0.0054 
tx3  0.0034 0.0021 0.0030 0.0032 
tx4  0.0034 0.0022 0.0040 0.0057 
tx5  0.0023 0.0018 0.0087 0.0098 
tx6  0.0010 0.0014 0.0020 0.0019 
tx7  0.0160 0.013 0.0060 0.0036 
tx8  0.0009 0.0009 0.0010 0.0009 
tx9  0.0091 0.0038 0.0020 0.0014 
tx10  0.0051 0.0040 0.0020 0.0018 
tx11  0.0062 0.0072 0.0090 0.0083 
tx12  0.0100 0.0080 0.0050 0.0077 

All tolerances are in millimeters (mm) 

Fig. 8. The relative distances of 190 candidates of best optimum based on TOPSIS technique.  

A. Ghaderi et al.                                                                                                                                                                                                                                



Reliability Engineering and System Safety 213 (2021) 107748

11

because the conventional method takes into account only the 
manufacturing and quality loss costs and discards rejection and in
spection costs. In contrast to the conventional approach, in which a 
deterministic constraint is defined on the quality characteristic, the 

quality characteristic is considered as an additional cost function in the 
proposed approach. 

Therefore, the proposed approach leads to a more reliable design 
with respect to the conventional tolerance synthesis approach. Also, it is 
worth noting that the proposed approach takes into account the 
epistemic uncertainty due to approximations in the system behavior 
model using the Bayesian regression model, and hence, the results ob
tained from it are more accurate and reliable than the obtained results 
from the conventional approaches. 

Consequently, based on obtained results, using the proposed method 
can simultaneously lead to decrees total cost, increase the quality of 
functional characteristic, and improve assembly reliability. 

4. Conclusions 

Despite the importance of product reliability evaluation, researchers 
in literature have not previously considered the tolerance - reliability 
design of mechanical assemblies. In order to obtain optimal tolerances 
satisfying desired reliability, this paper proposed a reliability-based 
optimal tolerance design method. The proposed method approximates 
the assembly function based on experimental observations by Bayesian 
linear regression. As a result, this method can be applied efficiently to 
the tolerance design of complex assemblies where the explicit assembly 
functions are difficult, if not impossible, to extract. Also, using Bayesian 
linear regression allows the designer to deal with meta-modeling un
certainties. Then, with the aim of assuring optimality and quality, the 
tolerance allocation problem is formulated as a bi-objective optimiza
tion problem that contains minimizing total cost (summation of quality 
loss and production costs) and minimizing the variation of functional 
characteristics. Then, the proposed method employs the NSGA-II multi- 
objective optimization approach to find Non-dominated optimal solu
tions. In order to select the best tolerances from the Pareto front, this 
approach utilizes Shannon’s entropy-based TOPSIS algorithm, which is 

Table 4 
Comparing obtained results from the proposed method and conventional 
approach.  

Design Criteria Under 
conventional 
tolerances 

Under 
Muthu 
method  
[48] 

Under optimum tolerances 
from the proposed method 
Without 
Bayesian 
reforming 

With 
Bayesian 
reforming 

Total Cost ($) 57.056 41.58 31.319 36.263 
Functional 

characteristic 
ty : N (μy, σy)

(mm)  

N (0.116,
0.0034)

N (0.0099,
0.0008)

N (0.0022,
0.0006)

N (0.0001,
0.0000)

Assembly 
reliability (R)  

32.03% 50.16% 94.87% 99.91%  

Fig. 9. Cumulative distribution function (CDF), probability density function (PDF), and covariance (Cov) of Monte Carlo simulations under conventional tolerances.  

Fig. 10. Cumulative distribution function (CDF), probability density function (PDF), and covariance (CoV) of Monte Carlo simulations under the optimum tolerances 
from the proposed method. 

Table 3 
Comparing the assembly reliability from the proposed method and Monte Carlo 
simulations under different conditions.  

Conditions Assembly reliability (R%)  Relative 
error Proposed 

method 
Monte Carlo 
simulations 

Under conventional tolerances 32.03% 33.43% 4.37% 
Under optimum 

tolerances from 
the proposed 
method 

without 
Bayesian 
reforming 

94.87% 95.12% 0.26 % 

with 
Bayesian 
reforming 

99.91% 99.97% 0.06%  
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a powerful multi-criteria decision-making tool. Finally, in order to in
crease the reliability to the desired level, the importance vector is used 
to correct obtained optimal tolerances. 

To demonstrate the capability of the proposed method, a trans
mission planetary gear system was considered as an illustrative case 
study. According to obtained optimum tolerances, using the proposed 
method can concurrently reduce total cost, increase the quality of 
functional characteristics, and improve the assembly reliability of the 
product. 
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[6] Clemént A, et al. The TTRSs: 13 constraints for dimensioning and tolerancing. 
Geometric design tolerancing: theories, standards and applications. Springer; 1998. 
p. 122–31. 

[7] Desrochers A, Ghie W, Laperriere L. Application of a unified Jacobian—Torsor 
model for tolerance analysis. J Comput Inf Sci Eng 2003;3(1):2–14. 

[8] Khodaygan S, Movahhedy M, Fomani MS. Tolerance analysis of mechanical 
assemblies based on modal interval and small degrees of freedom (MI-SDOF) 
concepts. Int J Adv Manuf Technol 2010;50(9-12):1041–61. 

[9] Ziegler P, Wartzack S. Sensitivity analysis of features in tolerancing based on 
constraint function level sets. Reliab Eng Syst Saf 2015;134:324–33. 

[10] Khodaygan S, Movahhedy M. Tolerance analysis of assemblies with asymmetric 
tolerances by unified uncertainty–accumulation model based on fuzzy logic. Int J 
Adv Manuf Technol 2011;53(5-8):777–88. 

[11] Khodaygan S, Movahhedy M. A comprehensive fuzzy feature-based method for 
worst case and statistical tolerance analysis. Int J Comput Integr Manuf 2016;29 
(1):42–63. 

[12] Khodaygan S, Ghaderi A. Tolerance–reliability analysis of mechanical assemblies 
for quality control based on Bayesian modeling. Assembly Automation; 2019. 

[13] Homri L, et al. Tolerance analysis—Form defects modeling and simulation by 
modal decomposition and optimization. Comput Aided Des 2017;91:46–59. 

[14] Liu T, et al. Assembly tolerance analysis based on the Jacobian model and skin 
model shapes. Assem Autom 2019. 

[15] Tlija M, et al. A Novel Model for the Tolerancing of Nonrigid Part Assemblies in 
Computer Aided Design. J Comput Inf Sci Eng 2019;19(4). 

[16] Tlija M, Ghali M, Aifaoui N. Integrated CAD tolerancing model based on difficulty 
coefficient evaluation and Lagrange multiplier. Int J Adv Manuf Technol 2019;101 
(9-12):2519–32. 

[17] Corrado A, et al. A variational model for 3D tolerance analysis with manufacturing 
signature and operating conditions. Assem Autom 2018. 

[18] Polini W, Corrado A. A Geometric Model for Tolerance Analysis with 
Manufacturing Signature and Operating Conditions. Int J Manuf, Mater Mech Eng 
(IJMMME) 2019;9(3):1–13. 

[19] Corrado A, Polini W. Comparison among different tools for tolerance analysis of 
rigid assemblies. Int J Comput Appl Technol 2020;62(1):36–44. 

[20] Anwer N, Ballu A, Mathieu L. The skin model, a comprehensive geometric model 
for engineering design. CIRP Ann 2013;62(1):143–6. 

[21] Kong X, Yang J, Hao S. Reliability modeling-based tolerance design and process 
parameter analysis considering performance degradation. Reliab Eng Syst Saf 
2020:107343. 

[22] Armillotta A. Selection of parameters in cost-tolerance functions: review and 
approach. Int J Adv Manuf Technol 2020;108:167–82. 

[23] Huang YM, Shiau CS. An optimal tolerance allocation model for assemblies with 
consideration of manufacturing cost, quality loss and reliability index. Assem 
Autom 2009. 

[24] Peng H. Concurrent tolerancing for design and manufacturing based on the present 
worth of quality loss. Int J Adv Manuf Technol 2012;59(9-12):929–37. 

[25] Liu S, et al. A closed-form method for statistical tolerance allocation considering 
quality loss and different kinds of manufacturing cost functions. Int J Adv Manuf 
Technol 2017;93(5):2801–11. 

[26] Natarajan J, Sivasankaran R, Kanagaraj G. Bi-objective optimization for tolerance 
allocation in an interchangeable assembly under diverse manufacturing 
environment. Int J Adv Manuf Technol 2018;95(5-8):1571–95. 

[27] Khodaygan S. A multiple objective framework for optimal asymmetric tolerance 
synthesis of mechanical assemblies with degrading components. Int J Adv Manuf 
Technol 2019;100(9-12):2177–205. 

[28] Khodaygan S. Meta-model based multi-objective optimisation method for 
computer-aided tolerance design of compliant assemblies. Int J Comput Integr 
Manuf 2019;32(1):27–42. 

[29] Liu X, et al. A modified quality loss model of service life prediction for products via 
wear regularity. Reliab Eng Syst Saf 2020;204:107187. 

[30] Hassani H, Khodaygan S, Ghaderi A. Bayesian reliability-based robust design 
optimization of mechanical systems under both aleatory and epistemic 
uncertainties. Eng Optimiz 2021. 

[31] Vahidi-Moghaddam A, Rajaei A, Ayati M. Disturbance-observer-based fuzzy 
terminal sliding mode control for MIMO uncertain nonlinear systems. Appl Math 
Modell 2019;70:109–27. 

[32] Vahidi-Moghaddam A, Mazouchi M, Modares H. Memory-augmented system 
identification with finite-time convergence. IEEE Control Syst Lett 2020;5(2): 
571–6. 

[33] Turkman MAA, Paulino CD, Müller P. Computational Bayesian Statistics: An 
Introduction, 11. Cambridge University Press; 2019. 

[34] Cheng K, Lu Z. Adaptive Bayesian support vector regression model for structural 
reliability analysis. Reliab Eng Syst Saf 2021;206:107286. 

[35] Lee, W.-J. and T. Woo, Optimum selection of discrete tolerances.1989. 
[36] Chase KW, Greenwood WH. Design issues in mechanical tolerance analysis. 

Manufac Rev 1988;1(1):50–9. 
[37] Arora JS. Introduction to optimum design. Elsevier; 2004. 
[38] Chase KW. Minimum cost tolerance allocation. Dimensioning and tolerancing 

handbook. 1999. 
[39] Pearn WL, Kotz S. Encyclopedia and handbook of process capability indices: a 

comprehensive exposition of quality control measures. World Scientific; 2006. 
[40] Deb K, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE 

Trans Evol Comput 2002;6(2):182–97. 
[41] Yoon KP, Hwang C-L. Multiple attribute decision making: an introduction, 104. 

Sage publications; 1995. 
[42] Deng H, Yeh C-H, Willis RJ. Inter-company comparison using modified TOPSIS 

with objective weights. Comput Oper Res 2000;27(10):963–73. 
[43] Zhang Y, Der Kiureghian A. Two improved algorithms for reliability analysis, in 

Reliability and optimization of structural systems. Springer; 1995. p. 297–304. 
[44] Kala Z. Global sensitivity analysis of reliability of structural bridge system. Eng 

Struct 2019;194:36–45. 
[45] Gerth RJ, Pfeifer T. Minimum cost tolerancing under uncertain cost estimates. IIE 

Trans 2000;32(6):493–503. 
[46] Baghban AA, et al. How to test normality distribution for a variable: a real example 

and a simulation study. Arch Adv Biosci 2013;4(1). 
[47] Wilk MB, Gnanadesikan R. Probability plotting methods for the analysis for the 

analysis of data. Biometrika 1968;55(1):1–17. 
[48] Muthu P, Dhanalakshmi V, Sankaranarayanasamy K. Optimal tolerance design of 

assembly for minimum quality loss and manufacturing cost using metaheuristic 
algorithms. Int J Adv Manuf Technol 2009;44(11-12):1154–64. 

[49] Alban A, et al. Efficient Monte Carlo methods for estimating failure probabilities. 
Reliab Eng Syst Saf 2017;165:376–94. 

A. Ghaderi et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0001
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0001
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0002
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0002
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0003
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0003
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0003
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0004
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0004
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0005
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0005
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0006
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0006
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0006
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0007
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0007
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0009
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0009
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0010
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0010
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0010
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0011
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0011
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0011
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0012
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0012
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0013
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0013
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0014
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0014
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0015
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0015
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0017
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0017
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0019
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0019
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0020
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0020
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0022
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0022
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0024
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0024
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0027
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0027
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0027
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0029
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0029
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0031
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0031
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0031
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0033
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0033
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0034
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0034
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0036
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0036
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0037
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0038
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0038
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0039
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0039
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0040
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0040
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0041
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0041
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0042
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0042
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0043
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0043
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0044
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0044
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0045
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0045
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0047
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0047
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00278-7/sbref0049

	A Bayesian-reliability based multi-objective optimization for tolerance design of mechanical assemblies
	1 Introduction
	2 Proposed method
	2.1 Bayesian modeling of design function based on experimental observations
	2.2 Formulating the multi-objective tolerance allocation problem
	2.2.1 Formulating objective functions for the optimum tolerance allocation
	2.2.1.1 Modeling the total cost function
	2.2.2.2 Formulating problem in multi-objective optimization form


	2.3 Extracting the non-dominated Pareto front of optimum tolerances for components
	2.4 Selecting the best optimum tolerances from the obtained Pareto front
	2.5 Bayesian reforming optimum tolerances to improve the reliability of the assembly

	3 Illustrative case study
	3.1 Constructing Bayesian regression model of assembly function based on experimental results
	3.2 Verification and discussion

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


