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A Data-Driven Model to Predict
Constitutive and Failure Behavior
of Elastomers Considering the
Strain Rate, Temperature, and
Filler Ratio
This new machine-learned (ML) constitutive model for elastomers has been developed to
capture the dependence of elastomer behavior on loading conditions such as strain rate
and temperature, as well as compound morphology factors such as filler percentage and
crosslink density. It is based on our recent new generation of machine-learning algorithms
known as conditional neural networks (CondNNs) Ghaderi et al. (2020, “A Physics-
Informed Assembly of Feed-Forward Neural Network Engines to Predict Inelasticity in
Cross-Linked Polymers,” Polymers, 12(11), p. 2628), and uses data-infused knowledge-
driven machine-learned surrogate functions to describe the quasi-static response of
polymer batches in cross-linked elastomers. The model reduces the 3D stress-strain
mapping space into a 1D space, and this order reduction significantly reduces the training
cost by minimizing the search space. It is capable of considering the effects of loading con-
ditions such as strain rate, temperature, and filler percentage in different deformation
states, as well as enjoying a high training speed and accuracy even in complicated
loading scenarios. It can be used for advanced implementations in finite element programs
due to its computing efficiency, simplicity, correctness, and interpretability. It is applicable
to a variety of soft materials, including soft robotics, soft digital materials (DMs), hydro-
gels, and adhesives. This model has a distinct advantage over existing phenomenological
models as it can capture strain rate and temperature dependency in a much more compre-
hensive way. [DOI: 10.1115/1.4056705]
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1 Introduction
Cross-linked polymer products are widely used in various appli-

cations ranging from medical gloves to shock absorbers due to their
lightweight, low-cost, durability, and resilience of elastomers.
So far, significant efforts have been made toward developing accu-
rate and affordable models to describe the nonlinear mechanical
behavior of cross-linked polymers or to predict their failure points
[1–3]. Finite strain theory and fracture mechanics are widely used
in most developed models. However, very few models can
predict elastomers’ nonlinear constitutive and failure behavior at
the same time [4–6].
Constitutive Behavior. The constitutive models of elastomeric

components, which are typically stated by explicit functions
within the context of continuum mechanics, are generally very
important for their design and optimization [7,8]. Numerous
studies have been conducted on and applications made to conven-
tional continuum mechanics-based constitutive models for the
numerical analysis of engineering structures. These models,
however, are only as precise as their underlying assumptions [9].
The Mullins effect, which is known to make it difficult to con-

struct a hyperelastic strain function that accurately reflects the

stress-strain response in filled rubber, has a few key characteristics.
These include a notable decrease in stiffness when it is unloaded
after the first cycle, an even greater reduction in stiffness when
the initial strain is higher, minimal softening when the initial
strain is not exceeded during subsequent cycles, and a minor but
persistent set that stays consistent through all following cycles
[10–12].
The permanent set normally rises after unloading from a higher

maximum strain; however, occasionally, it might recover following
a significant period of rest. The Mullins effect has been extensively
studied in the literature in an effort to link it to a variety of factors,
including quasi-irreversible structural changes in filler configura-
tion, chain- slippage, and network damage.
Classification of Cross-Linked Polymers Response. Figure 1

depicts two loading cycles in the uniaxial tensile test to demonstrate
this phenomenon. A virgin particle-filled rubber specimen is loaded
to extend λ(1) on Path 1 and then unloaded to the stress-free state on
Path 2. When the external stress is fully removed, the unloading
curve intersects the positive λ axis at the stretch λ(1)re , which is the
residual extension remaining in the specimen. The stress-stretch
curve leads to Path 3 when the specimen is reloaded to a stretch
λ(2) greater than λ(1). The specimen is then unloaded along Path
4, with a wider residual stretch λ(2)re remaining. At the same
stretch level, the stress along Path 2 (Path 4) is significantly less
than that along Path 1 (Path 3) due to the stress-softening effect.
The permanent set is the remaining stretch after full unloading,
which may gradually decrease over time. In fact, according to
experimental findings [12], the reloading curve after a loading
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period is lower than the virgin material’s first loading curve but
higher than the unloading curve. The hysteresis phenomenon is
the difference between the unloading and reloading directions.
The strain rate effects are responsible for this phenomenon [10,11].
Cross-linked polymers have strong nonlinear elasticity associated

with inelastic effects in their overall behavior. Because of the under-
lying polymer microstructure inside the polymer matrix, amorphous
polymers display rate-dependent finite elastic-plastic behavior. The
realignment of kinks, rearrangement of convolutions, reorientation,
and uncoiling of molecular chains as the load is accommodated
results in this behavior. Temperature fluctuation, on the other
hand, can have an impact on the mechanical characteristics of
these materials. They may be exposed to the outdoors or have inter-
nal heating as a result of energy dissipation. The majority of theo-
retical and experimental research on this topic has been done at
room temperature [14]. However, these materials’ mechanical char-
acteristics should be explored at temperatures other than room tem-
perature. The interaction between the filler and the polymer matrix
is also affected by temperature changes. As a result, filled polymers
display more complicated nonlinear behavior that is temperature-
dependent. As a result, developing a temperature-dependent and
filler-dependent, strain rate constitutive model that predicts the
inelastic behavior of cross-linked polymers in various states of
deformation for a wide range of strain, strain rate, temperature,
and filler concentration to be applicable for various types of opera-
tions is extremely important and challenging.
Constitutive Approaches to Model Strain Rate of Soft Materials.

Phenomenological models, which are based on a collection of mate-
rial properties, do not take into account the microphysics of materi-
als [5,12]. Micromechanical analysis, on the other hand, is based on
the statistical mechanics of polymer structure and uses physical
meaning in its analysis. Micromechanical models that include func-
tions and material factors linked to microstructure take into account
microstructural data; however, their practical applicability is
restricted owing to their high computing costs and lengthy training
procedure.
With the increase of the computational capacity, data-driven

approaches can address the limits of the analytical models derived
based on continuum mechanics. Recently, increasing attention has
been given to developing data-driven approaches that are directly
derived based on material data. Tang et al. [15,16] proposed a
mechanistic-based, data-driven approach for numerical analysis,
and they demonstrated that this mechanistic-based approach could
exploit the deep physical insights obtained from well-established
finite strain theory and experimental evidence. At the same time,
this approach can circumvent issues in establishing explicit func-
tions to characterize material behaviors, which is necessary for clas-
sical CDM theory [17].
In this contribution, a physics-informed data-driven strain rate

model was developed to predict the constitutive and failure beha-
vior of the cross-linked polymers that integrates conditional artifi-
cial neural networks (CNNs) into continuum reconfiguration. The

data-driven constitutive model developed in this study can consider
the synergistic effect of strain rate, temperature, polymer type, and
filler ratio. A practical two-step method is proposed in the data train-
ing stage, enabling highly effective training using only a small
amount of experimental data. To validate the approach, the pro-
posed method was applied to investigate the mechanical behaviors
of natural rubber (NR) and styrene-butadiene rubber (SBR) under
various loading conditions. Our proposed network architecture
has several advantages compared to other researches. First, it is
able to integrate strain rate, temperature, and filler percentage
together with physics to accurately predict the behavior of elasto-
mers, allowing for more accurate predictions. Second, it uses a
deep learning approach that enables the model to learn the
complex interactions between the different parameters, allowing it
to make more accurate predictions than traditional approaches.
Finally, by incorporating physics into the model, it provides a
more comprehensive understanding of how the elastomer
behaves, allowing for more accurate predictions.
The paper is organized as follows. Section 2 presents a descrip-

tion of knowledge infusion through the hard implementation of
governing laws such as continuum mechanics and polymer
physics. Section 3, the setup of our engine and its dependence on
external loads and compound properties, e.g., different strain
rates, filler percentages, and temperatures, is described. Section 4
presents a demonstration of the developed data-driven model, in
which the model is used to predict the strain rate-dependent and
temperature-dependent mechanical response of the cross-linked
polymer, and it also includes a discussion of the results. Conclu-
sions based on the research findings are provided in Sec. 5.

2 Directional Physics-Informed Model
The rise of machine-learned (ML) models has gotten a lot of

press in recent decades. For modeling the mechanical behavior of
rubbery media, the first generation of “black-box” ML models
was presented as another sort of phenomenological model [18–
20]. Note that the high degrees-of-freedom of these approaches
makes them obsolete due to the high demand for data for training.
Stress-strain tensors in solid mechanics are only partially visible

in lower dimensions. As a result, acquiring data to feed the black-
box ML model is quite challenging. As a result, physics-informed
neural networks (PINNs) represent the best of the two previously
described methodologies in the next generation of ML models.
To put it another way, PINN seeks to overcome the limits of both
phenomenological and micromechanical models by extracting
microstructural behavior from macroscopic experimental data
[21,22].
Model-free distance minimization approaches eliminate the

usage of constitutive models by explicitly selecting stress-strain
couples with the shortest distance to experimental data while main-
taining compatibility and equilibrium restrictions [23,24].

Fig. 1 TheMullins effect schematic with a permanent set: (a) two uniaxial tensile cycles deformation based on ASTMD412-C [13]
and (b) the related stress-stretch curves
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Dimension-reduction methods attempt to construct a constitutive
manifold from experimental data to explain a close approximation
of the strain energy in various states of deformation. [25,26]. To
capture the high-dimensional and non-smooth behavior of the mate-
rial, ML models are employed to derive surrogate functions as
reduced-order models of multi-scale approaches. The approach
has been proven to be a promising strategy in multi-scale research
[27,28]. In this contribution, a physics-informed data-driven nonlin-
ear rate-dependent constitutive model is proposed based on our
recent work on implementing knowledge into neural network
(NN) models, which captures not only compounding ratios but
also temperature and strain rate effects.

2.1 Constitutive Behavior: Mechanical and Environmental
Damages. The experimental results show that an elastomeric
sample exposed to parallel evolution behaves in a mode that may
be characterized as hyperelastic with accumulated mechanical and
environmental damages. Accordingly, two phenomena, (i) chemical
evolution and (ii) mechanical evolution, brought on the damaging
buildup in the elastomers.
The major objective of this part is to define suitable matrix energy

taking the evolution precursor E into account. We define 0 < ε < 1
as a general non-kinematic scalar parameter, taking into account
effective factors for evolution accumulation, to describe the
overall state of evolution in relation to the evolution brought on
by mechanical and environmental forces.

2.2 Mechanical Damage: Cooperative Multi-Agents
System. Through the hard implementation of the physical laws
into the neural network, we already discussed how the mechanical
damage in constitutive behavior of polymer matrix could be repre-
sented by cooperative multi-agent system Ai

j, i∈ {1, n}, j∈ {1,m},
based on our last study [29]. The model can explain different fea-
tures in the material behavior with n*m different learning agents.
The objective is to minimize the collective error between the pre-
dicted system performance and the experimental data. Each agent
is trained to provide a specific material behavior that minimizes
the total error. To bring all of the agents back into a centralized
system, model fusion is employed. Our model represents each
agent by a simple deep-learned neural network constrained by the
hard implementation of physical laws into a neural network.
Constitutive behavior of the virgin material is modeled based on

our recent paper [29] using a set of collaborative shallow neural
network agents.
In our recent paper, we suggested a framework to use ideas from

continuum mechanics, statistical physics, and polymer science to
create super-constrained reduced-order machine learning algo-
rithms, which could partially solve the present challenges. We
have simplified the 3D stress-strain tensor mapping problem into
a small set of super-constrained 1D mapping problems via sequen-
tial order reduction. Then, we added a collection of numerous rep-
licated neural network learning agents (L-agents) to categorize
those mapping issues into a select few groups, each of which was
described by a different sort of agent. Accordingly, the polymer
matrix continuum has been represented by a microsphere con-
structed by polymer chains that are uniformly and equally dispersed
in all spatial directions. Micro-sphere concept is valid for materials
that are initially isotropic and incompressible. The volumetric strain
energy of the microsphere was then expressed by integrating the
energy of chains in all directions as [di]i=1...Nd

. Assuming the 3D
polymer matrix to be a homogeneous super-assembly of various
1D polymer bundles dispersed in all spatial directions, the energy
of the sphere, Ψm, may be easily calculated by integrating the ener-
gies of all the components, as

Ψm =
1
4π

∫
S
Ψd

mdS
d (1)

Using this approach, the behavior of the polymer matrix can be
modeled by having the behavior of basic 1D components. To

calculate the energy of all 1D components, a surface integration
may be carried out numerically across Nd integration directions
[di]i=1...Nd

with different weight factors [wi]i=1…n. Such integration
can be performed by discretizing the sphere into finite sections.
Therefore, it is possible to express the strain energy of the
polymer matrix Ψm in terms of its constituents as

Ψ(F) =
1
4π

∫
S
ψddSd ≅

∑Nd

i=1
wiψ

di , where ψdi = Bdi (2)

where F stands for macro-scale deformation gradient, ψdi is the
element’s energy in direction di and is represented by a group
of L-agents Bdi that, using the microsphere idea, represents the
cooperative addition of many L-agents Bdi = ∑Ns

j=1 A i( )
j =∑Ns

j=1 N i( )
j xe,Θe( ). We assume that, in the virgin state, Bdi = Bdj ,

all multi-agents are identical in order to meet initial isotropy. It is
crucial to reformat the energy of a single polymer chain with

respect to λd =
���������
dTFTFd

√
as follows because chains in different ori-

entations are subject to multiple micro-stretches. As a result, we may
directly extract the matrix’s energy in terms of sub-elements and
L-agents.

Ψm =
1
4π

∫
S
Ψd

mdS
d ≅

∑Nd

i=1

∑Ns

j=1

wiψ
di
j : =

∑Nd

i=1

∑Ns

j=1

wiAi
j (3)

If each sub-element is characterized by an L-agent, a simplified
feed-forward neural network will represent the super-simplified
scalar-to-scalar mapping behavior of the sub-element. The first
Piola–Kirchhoff stress tensor P may be calculated using Eqs. (1)
and (3) to summarize the enforced restrictions.

P =
∂Ψm

∂F
− pF−T : =

∑Nd

i=1

∑Ns

j=1

wi

∂Ai
j

∂F
− pF−T (4)

where p is the Lagrange multiplier used to assure the material’s
incompressibility. P may therefore be written as

P =
∂ΨM(F)

∂F
− pF−T ,

∂ΨM(F)
∂F

=
∑k
i=1

wi
∂Bdi

∂λdi
1

2λdi
∂di �Cdi
∂�F

:
∂�F
∂F

, while ψdi = Bdi (5)

where C is the right Cauchy–Green tensor, �F = J−1/3F, and
�C = J−2/3C. Additionally, by applying the following identities, Eq.
(5) might be made even simpler as follow:

∂d�Cd
∂�F

:
∂�F
∂F

= 2�F(d⊗ d):J−
1
3I = 2J−

1
3�F(d⊗ d) (6)

Normalization, conditions of growth, isotropy, objectivity, and
poly-convexity are already satisfied in the proposed equation in our
recent paper [29].

2.3 Environmental Damage: Multiplicative Decomposition
of Strain Energy. The effects of loading scenarios, material mor-
phology, and environmental conditions on rubber behavior are gen-
erally considered inelastic. From a modeling aspect, inelastic effects
can be described through a collection of chemical and physical
events within the matrix. However, establishing the relationship
between the chemical/physical evolution of the matrix and the
changes in macro-performance remains a significant challenge in
physics-based modeling. On the contrary, the data-driven models
do not need to establish this relationship explicitly and thus can
directly describe the strain energy of the matrix through multiplica-
tive decomposition to describe the effects of physical Ep and chem-
ical Ep evolutions on the strain energy of a sub-element as

ψdi
j = EpEcψ

di
0:j (7)

where ψdi
j , and ψdi

0:j denote the updated and reference energy of a
sub-element in the network j and direction di damaged portion.
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Almost all external inelastic effects can be described using mul-
tiplicative chemical and physical evolution parameters, ranging
from aging and degradation to hyperelasticity and creep.

• Reversible physical changes. Ep mainly involves
deformation-induced changes in the material and often heals
over time. Thus, Ep gradually tends toward one with time. It
is mainly induced by the breakage of ionic bonds, the recover-
able hyperelastic motion of free chains, and the slippage of
elastically active cross-linked chains. In filled elastomers,
physical evolution can be further induced by the sliding
between fillers and filler-rubber matrix, the breakage and ref-
ormation of agglomerates, and the deformation of elastic
aggregates. These mechanisms also induce physical stress
relaxation, cyclic hysteresis, and often healing. Within the
context of this paper, deformation-induced mechanical
damages are mainly described by maximum microstretch in
history λdmax and classified as physical changes. One can
approximate Ep as a deep neural network (DNN) with follow-
ing parameters:

Ep =N p(xp, Θ(i)
p ), {λ

d ∈ xp, λd, λdmax} (8)

• Maximum microstretch in history λdmax. In the course of
deformation, polymer chains begin to slide on or debond
from the aggregates. This debonding starts with the shortest
chain and gradually involves longer and longer chains.
Under unloading, the debonded chains do not reattach back
to the aggregate’s active sites, and thus the maximal micro-
stretch previously reached in the loading history

λdmax = max
τ∈(−∞,t]

λd(τ) (9)

is crucial for the description of the polymer-filler debonding.
• Irreversible chemical changes. Ec mainly involves the unre-

coverable inelastic events, and thus Ec remains constant or go
toward zero over time. Unrecoverable molecular changes in
the cross-linked network are often manifested by the breakage
of covalent bonds and the formation of a “plastic-like” beha-
vior upon complete unloading, i.e., permanent set. The chem-
ical evolution can lead to competing mechanisms such as
scission or formation of chemical bonds and crosslink forma-
tion, which are also influenced by rubber compounds such as
the ratio of antioxidants, fillers, etc. Within the context of this
paper, the effects of the aging condition, compounding ratios,
and external temperatures are mainly described by chemical
evolution. One can approximate Ec as a DNN with following
parameters:

Ec =N c(xc, Θ(i)
c ), {n, T} ∈ xc (10)

In general, we outline two key requirements that Ep and Ec must
meet

(1) Ep should always move toward one with time,
(2) depending on the situation, Ec will stay the same or go

toward zero over time.

3 Strain Energy of the Damage Matrix
Given the multiple multiplicative elements involved in deriving

the strain energy of the damaged matrix, we proposed using a con-
ditional neural network (CondNN) to represent the energy of each
L-agent. The reason for the importance of this is having a model
to predict superficial damage in non-aged material and also
predict hardening in virgin but aged material.

3.1 Conditional Neural Network L-Agent. A simple N-layer
multilayer feed-forward neural network comprising an input layer,
N−1 hidden layers, and an output layer. We suppose that the nth

hidden layer has Nn neurons. The previous layer’s post-activation
output xn−1 ∈ RNn−1 is then fed into the nth hidden layer, and the
specific affine transformation is of the form

Hn(xn−1) ≜ W(n)xn−1 + b(n) (11)

where the network weight W(n) ∈ RNn×Nn−1 and the bias term b(n) ∈
RNn to be learned are both initialized using unique procedures like
Xavier or He initialization [30,31].
The nonlinear activation function σ(.) is applied component-

by-component to the current layer’s affine output Hn. Furthermore,
for some regression issues, this nonlinear activation is not employed
in the output layer. As a result, the neural network may be denoted
as

N (x; Θ) = (HN ◦ σ ◦ HN−1 ◦ · · · ◦ σ ◦ H1)(x) (12)

where ◦ denotes the composition operator, Θ = {W(n), b(n)}Nn=1 ∈ P
denotes the learnable parameters to be optimized later in the
network, and P denotes the parameter space, and N and x0= x
denote the network’s output and input, respectively.
CondNNs are a continuum of machine-learned models which are

hybrids of two extreme machine learning algorithms, computation-
ally efficient trees, and super-accurate neural networks (see Refs.
[32,33]). CondNNs lie in between the two extremes, and we can
tune the hyperparameters to generate CondNNs with different effi-
ciency/accuracy trade-offs. By using the routing feature from the
decision tree, CondNNs can use conditional routing to confine com-
putation to only a small region of the network rather than involving
all nodes. Such capability makes CondNNs particularly relevant for
complex problems where the outputs are not only dependent on past
events, such as deformation-induced matrix damages, but also on
external data, which can be loading conditions or compound prop-
erties (Fig. 2).
Routed behavior, in which data are transmitted to one or more

children depending on a learned routing function, is a characteristic
of decision trees. In other words, CondNNs are decision trees with
the difference that instead of nodes, shallow NNs are being used
(see Fig. 3). Note that we can use routing conditions to derive phys-
ical or chemical evolution parameters or a combination thereof.
Also, such architecture can be scaled to include other external
effects such as aging, creep, swelling, or plasticity (Fig. 4).
Conditional neural networks are advantageous in comparison to

simple neural networks because they can be used to provide
chances for more efficient and effective learning. These networks
allow for the learning process to be tailored to specific conditions,
meaning that the network can better adjust to the data it is given
and can better predict future outcomes. This allows for more accu-
rate and detailed predictions, as the network can adjust itself to the
conditions that are being presented to it. Additionally, conditional
neural networks allow for more efficient and effective learning as
they can better identify patterns and make better predictions,
leading to faster and more accurate results.

– Engine setup with multiple CondNNs. The hyperparameters
summary and inputs determine the design of the neural
network: (i) the number of hidden layers, nl (network depth),
(ii) the number of neurons per hidden layer, nn (network
width), and (iii) the activation function. So, we can write

Ep =N p(xp, Θ(i)
p ), Ec =N c(xc, Θ(i)

c ), ψ
di
0:j =N e(xe, Θ(i)

e )

(13)

Next, we define the loss function L mean squared error for a total
of ntot data points as

L x,Θ( ) = 1
2

∑ntot
n=1

g1
∑Nd

i=1

∑Ns

j=1

wi

∂ EpEcψ
di
0:j

( )
∂F

− pF−T

⎛
⎝

⎞
⎠g1 − P11

n

⎡
⎣

⎤
⎦

2

(14)
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where P11
n : = g1Pg1 is the first component of the experimental

macro-scale stress tensor Pn in loading direction g1 for point n.

4 Experimental Validation
For benchmarking, the proposed engine has been trained and val-

idated in four different loading scenarios

(1) Digital materials (DMs) that promote relaxation.
(2) Modeling strain rate effects on uniaxial tension and

compression.
(3) Modeling individual and combination of the temperature and

filler ratio effects on constitutive behavior.
(4) Modeling coupled effects of the temperature and strain rate

on constitutive behavior.

To evaluate engine’s prediction at different stages of deforma-
tion, the predictions were benchmarked against experimental data
in all scenarios.

4.1 Engine Architecture. We employed an identical engine to
mimic both loading scenarios, and the engine is made by Nd= 21

teams, each with Ns= 2 L-agents [34]. It is worth noting that the
number of teams and associated L-agents were determined based
on the accuracy/efficacy trade-off. We evaluated one input layer,
one hidden layer with four neurons, and three activation functions
soft plus ψ(·)= ln(1+ e·), sinusoid ψ(·)= sin(·), and hyperbolic
tangent ψ(·)= tan h(·) for the CondNNs structure of L-agents. We
are employing a shallow network to guarantee the convergence of
finite element method analysis.
To capture the deformation of the rubbers with complete memory,

the internal parameters of L-agents were developed using λj−max

parameters. The first and second deformation invariants were pro-
vided to each team in order to allow them to anticipate possible
deformation states [35]. The requirement was met by feeding input
sets to the first and second L-agents in the following order:

x(i)p = [λdi , λ̇
di , λdimax], x

(i)
c = [T], x(i)e = [n, λ̇

di , λdimax] (15)

while

λdi =
������
diCdi

√
, C = FTF (16)

where λdi is connected to I1, as the first invariants of C.

Fig. 2 (a) The breakage of chain crosslinks, (b) chain scission, (c) the bond rupture of rubber-particle linkages, and (d ) des-
orption of chains from particle surfaces

Fig. 3 Schematic figures for (a) a compact graphical notation for neural networks, (b) a representing decision trees, and
(c) a generic conditional network
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In conclusion, the rubber matrix was represented as a cooperative
game with 21 teams of two agents through Ai

j, i∈{1,21}, j∈{1,2}.
The ultimate cost function of the engine after agent fusion is given
as

L(x, Θ) = 1
2

∑ntot
n=1

g1
∑21
i=1

∑2
j=1

wi

∂Ai
j

∂λdij

∂λdij
∂F

− pF−T

( )
g1 − P11

n

[ ]2

(17)

assuming λmax⩽0, and weights related to λ, and λ̇⩾0 to satisfy ther-
modynamic consistency and poly-convexity, respectively.
Training Procedure. For history-dependent materials, internal

parameters should be used to feed the L-agent parameters that spe-
cifically represent the material’s damage. For defining various mate-
rials, however, different sorts of damage parameters would be
necessary. For example, internal parameters should convey infor-
mation from one iteration to the next for materials having recent
memory, such viscoelastic materials. As an example, the
maximum stretch and temperature in rubber material may be uti-
lized as a damage antecedent to display the history of damage in
each direction. In contrast, for materials with complete memory,
such as elastomers, the internal parameters can be established

independently of the solution iterations. Therefore, each L-agent
in every direction has damage parameters. Because we cannot
train agents in situations in which they are not involved or have a
little part to play, we must train using biaxial dataset.
As a result, confidence in agent training is closely correlated with

the quality of the training data and the contribution of the agents in
certain circumstances. By characterizing the quality of data in rela-
tion to the input required by each agent, we may assess the confi-
dence interval within which an agent may be taught with high
confidence with regard to the given data. Low-quality data might
result in inaccurate conclusions that seem to be fully solid, while
too little data can obscure important details and give us a false
sense of confidence.
The purpose of training with several deformation states is to

demonstrate the performance of the model using various datasets.
The model can forecast various states of deformation depending

on the ranges that the model has calibrated based on uniaxial tensile
data up to stretch χ. The prediction ranges should fall inside the area
where the agent has been trained in order to guarantee good model
prediction (for more information, please see Ref. [29]).
These training/prediction domains may be estimated for various

training and prediction scenarios with various deformation states,
as shown in Table 1. It should be noted that while the model may

Fig. 4 Illustration of the suggested model, which includes order reduction andmodel fusion. It demonstrates how we propose
a knowledge-based platform using ideas from continuum mechanics, polymer sciences, physics, and machine learning.

Table 1 Prediction domain for train until stretch χ

Training prediction Uniaxial tensile Biaxial tensile Pure shear Uniaxial compression Plane strain compression

Uniaxial tensile χ χ χ 1��
χ

√ 1
χ

Biaxial tensile
��
χ4√ χ

��
χ4√ 1��

χ
√ 1

χ

Pure shear χ χ χ 1��
χ

√ 1
χ

Uniaxial compression 1��
χ

√ 1
χ2

1
χ

χ χ

Plane strain compression 1��
χ

√ 1
χ2

1
χ

χ χ
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extrapolate and make predictions outside the confidence range, they
are not always reliable.
The number of data points that we are using for training is equal

to the number of points for experimental data, which has been
shown in the figures. Also, Fig. 5 shows the error to the number
of iterations after training related to tensile tests on carbon black-
filled rubber and polyurea behavior at high strain rates.
Grid search is a powerful tool for hyperparameter selection and

can help to identify the optimal set of hyperparameters for a
given model. Based on that, we tuned the model’s hyperparameter
such that a range of hyperparameters and their respective values are
identified, and the performance of each set of hyperparameters is
evaluated. The set of hyperparameters that yields the best perfor-
mance is then selected as the optimal set of hyperparameters that
should be used. Also, the model training time is less than a few
minutes due to the simplicity of the model. However, the time
can be reduced by using more powerful hardware, such as GPUs
or multiple CPUs, in order to speed up the training process.
Results for Elastomers. We assess the performance of the sug-

gested model in this part using experimental data from multiple
elastomers in various rate ranges. First, we look at uniaxial defor-
mations since evaluating the effectiveness of suggested models in
simple deformations, which are easier to test, is a standard
method (actually, most available data in the literature are for uniax-
ial tension or uniaxial compression). The following set of data was
used for benchmarking (see Table 2).

• High damper rubber (HDR) compression experiment. Our
engine was validated against monotonic HDR compression
experiments at low to moderate strain rates [36]. To eliminate
the Mullins effect, each virgin specimen was exposed to five
pre-loading cycles before the actual test, as described in
Ref. [36]. Our engine predictions and the experimental data
are in strong agreement, as shown in Fig. 6(a). HDR’s beha-
vior did not show a significant shift at rates higher than
0.88/s, according to Ref. [36]. Note that dot lines have been
used for training and the solid lines show the performance of
the model in prediction after the training.

• Tensile tests on carbon black-filled rubber [37]. After
removing the Mullins effect, the experiments were carried
out on five different specimens using monotonic strain-
controlled tension. The tests were performed at low to

moderate strain rates, and the data are recorded as nominal
stress versus stretch. When compared to the experimental
data, the performance is illustrated in Fig. 6(b). Note that dot
lines have been used for training and the solid lines show
the performance of the model in prediction after the training.

• Polyurea behavior at high strain rates using a drop weight
tensile testing device [38]. In view of the high flexibility and
economic feasibility of polyurea, the high rate-dependent
deformation behavior of polyurea was used for benchmarking.
The comparison against experiments is shown in Fig. 6(c).
Experiments show that at rates exceeding 400/s, the material’s
behavior becomes nearly rate-independent, which is exactly
what the model predicts.

• Uniaxial tensile test at different temperatures. Seasonal
temperature changes can cause significant variations in the
mechanical properties of rubber. Therefore, the impact of tem-
perature on the mechanical properties of rubber must be con-
sidered. Although the mechanical responses of filled and
unfilled rubber have been characterized at room temperature,
the effects of temperature on the mechanical response of
rubber materials in a certain deformation range have rarely
been studied [39]. Four types of rubber materials filled with
different contents of carbon black were used in this study
[39]. The rubber matrix was natural rubber, and the filled
carbon black was N234. The proposed model has been bench-
marked against these results to show the performance of the
model in predicting the effects of temperature on the mechan-
ical response of rubber materials (see Fig. 7).

• Uniaxial tensile tests on styrene-butadiene rubber with dif-
ferent filler ratios. The data of four styrene-butadiene rubbers
filled with 30, 40, 50, or 60 phr carbon black N347 and con-
structed of the identical gum composition were used to validate
our engine’s predictive capabilities [40]. Each material softens
to some extent when loaded to maximum strain, and this is
reflected in a gentler reaction when unloaded. The comparison
against experiments is shown in Fig. 8. Note that dot lines have
been used for training and the solid lines show the performance
of the model in prediction after the training.

Results for Polyvinyl Acetate (PVA). We have previously shown
that our constitutive model can properly predict uniaxial tension test
data for elastomers. Uniaxial tension tests for dual-crosslink PVA
[41] at various temperatures, and strain rates may also be accurately
predicted, as shown below. We forecast the stress-stretch curve for
uniaxial constant stretch rate tension tests using weights gained
during model training and compare these predictions to test out-
comes. Model predictions are compared to three temperature and
two loading rate tests in Fig. 9. There is a high agreement between
model predictions and experimental evidence. Fitting is shown by
dashed lines, whereas prediction is represented by solid lines.
Results for Digital Materials. In this paragraph, we use the

weights derived from very high bonding (VHB) 4910’s stress relax-
ation training to demonstrate the model’s relaxation capture ability.
The VHB was loaded at a stretch rate of λ̇ = 0.1613/s, as shown in
Fig. 10(b). This sample is stretched at a set pace, and once it reaches
λ= 2, 4, 6 it is held in that stretch for 900s before being loaded

Fig. 5 Convergency in the training of proposed NNmodel with experimental dataset: (a) carbon black-filled rubber and (b) poly-
urea behavior at high strain rates

Table 2 The summary of the experimental datasets used for
benchmark

Material Loading type Feature References

HDR Compression Strain rate [36]
Black filled
rubber

Uniaxial Strain rate [37]

Polyurea Uniaxial High strain rate [38]
Rubber Uniaxial temperature [39]
SBR Uniaxial Filler ratio [40]
PVA Uniaxial Temperature and strain

rate
[41]
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again. When it hits the λmax= 7 maximum stretch, it is emptied at
the same pace. Please read this article [43] for more information.
The experiment’s outcome is depicted in Fig. 10(a). Our strain
rate model can well capture the relaxation behavior of VHB in

loading, relaxing, and unloading operations, as illustrated in
Fig. 10. Note that due to the lack of using convolution integral in
our model, it is not able to predict behavior that has a different situa-
tion from the training dataset.

Fig. 6 (a) Comparison of the proposed model results with [36] nonlinear’s uniaxial compres-
sion test data for high damping rubber, (b) comparison of the proposedmodel results with [37]
uniaxial extension test data for carbon black filled rubber, and (c) comparison of the proposed
model results with [38] uniaxial extension test data for polyurea. Fitting is shown by dashed
lines, whereas prediction is represented by solid lines.

Fig. 7 Based on the suggested model and the uniaxial extension test results provided by
Ref. [39], stress-strain curves of three types of carbon black-filled vulcanized rubber com-
pounds (a) C00, (b) C40, and (c) C60 at different temperatures. Fitting is shown by dashed
lines, whereas prediction is represented by solid lines.
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Fig. 8 The suggestedmodel was used to compare the outcomes of four rubbersmanufactured of the sameSBR gumand filled
with either (a) 30, (b) 40, (c) 50, or (d ) 60 phr of N347 carbon black when they were subjected to cyclic uniaxial
loading-unloading, as described by Ref. [40]. Fitting is shown by dashed lines, whereas prediction is represented by solid lines.

Fig. 9 Reference [42] provided a comparison of model and experimental testing at two dis-
tinct stretch rates and temperatures of (a) 13 °C, (b) 30 °C, and (c) 50 °C. Fitting is shown by
dashed lines, whereas prediction is represented by solid lines.
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5 Summary
The purpose of this study was to expand our most recent model,

[29], to include the impacts of strain rate, temperature, and percent-
age of filler without sacrificing the accuracy of the prior model in
order to make the previous model more complete. To anticipate
the inelastic hyperelastic behavior of soft materials, a large strain
three-dimensional physics-informed data-driven model was devel-
oped. Despite significant attempts to predict hyperelasticity and
its influence on the mechanical performance of soft materials,
there have been few models that can concurrently account for
strain rate, temperature, and filler percentage with acceptable com-
putational resources. By order reduction into a 1D mapping issue,
we used polymer science, statistical physics, machine learning,
and continuum mechanics techniques to simplify 3D stress-strain
tensor mapping. The mechanical behavior of VHB 4910, elasto-
mers, and hydrogel was predicted using our model. The results
reveal that our model accurately describes the hyperelastic behav-
iors of soft materials. Based on the findings of the proposed
model on various datasets, the following conclusions may be
drawn: (1) the suggested model has predicted rubber stress-strain
curves at various strain rates that were in good agreement with
the experimental data. The developed model may, therefore, prop-
erly represent the hyperelastic mechanical behavior of soft materials
over a specified deformation range, (2) the devised approach was
evaluated for its ability to represent the temperature dependency
of elastomer mechanical performance, and (3) the suggested
model was used to create a filler-dependent model with specific
filler quantity parameters. At various filler quantities, the explicit
filler quantity model may adequately explain the hyperelastic
mechanical behavior of rubber. Because of its computing speed,
simplicity, correctness, and interpretability programs for FE, the
model is an excellent choice for advanced implementations. Note
that hybrid methods combine data-driven and physics-based
approaches to tackle complex problems. While these methods
often have the advantage of combining the best of both worlds,
they also present certain limitations. Data-driven methods rely on
large amounts of training data to approximate a solution. This reli-
ance on data means that these methods are limited by the quality and
quantity of the data available. If the data are incomplete or noisy, the
resulting solution may be inaccurate. Additionally, data-driven
methods do not take into account any physical or theoretical con-
straints. On the other hand, physics-based methods rely on theoret-
ical models to approximate a solution. These models are often
complex and require a great deal of knowledge to implement cor-
rectly. Additionally, physical laws are often too restrictive and
may not capture all of the complexity of a problem. The limitations
of hybrid methods arise from the limitations of both data-driven and
physics-based methods. Hybrid methods combine the best of both

approaches, but they are still limited by the availability of data
and the complexity of the physical models. Hybrid methods are
also limited by the time and effort required to develop and imple-
ment them. Finally, hybrid methods tend to be more difficult to
interpret, as they combine the complexity of both data-driven and
physics. Also, the shape and size of the sample in tensile testing
have a direct effect on the output of the test. The shape of the
sample affects the stress-strain curve, which is the output of the
test. The size of the sample affects the maximum load that can be
applied before the sample fails. In general, larger specimens have
higher ultimate tensile strengths than smaller specimens because
they are able to resist larger loads. The shape of the sample also
affects the stress-strain curve because different shapes will have dif-
ferent stress-strain curves. For example, a round sample will have a
different stress-strain curve than a rectangular sample. However, the
model works as long as the stress-strain curves are based on the
same standards.
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