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ABSTRACT
Elastomers are now commonly used in a number of indus-

tries, including aerospace, structure, transportation, shipbuild-
ing, and automotive, due to their excellent workability, forma-
bility, and flexibility. During their activity, elastomers are sub-
jected to harsh environmental conditions, which decreases their
resilience. False predictions made early in their lives can have
major financial and environmental implications. Elastomers’
performance and properties, such as strength, durability, and
density, are influenced by chemical changes in these materials,
known as degradation, which occurs over time. This process can
alter the morphology of a polymer matrix as well as cause chain
scission and cross-linking, resulting in different behaviors than
that of the unaged material. To demonstrate the effect of thermal-
oxidative aging on the mechanical behavior of elastomers, sev-
eral experimental and theoretical models have been proposed.
In view of the large volume of experimental data available on
micro-structural evolution in the course of aging, we propose a
physics-based data-driven approach to overcome the shortcom-
ings of both phenomenological and micro-mechanical models.
This work presents a novel thermodynamically consistent, multi-
agent machine-learned model for predicting the constitutive be-
havior of cross-linked elastomers during environmental aging,
such as thermo-oxidative and hydrolytic aging for various states
of deformation. Single mechanism degradation changes the poly-
mer matrix over time where it is causing chain scission, reduction
of cross-links, and morphology change. To capture the idealized
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Mullins effect and permanent set due to the effect of single aging
mechanisms on nonlinear mechanical responses of elastomers,
we propose a data-driven model for simulating inelastic elements
in a polymer matrix. By using a sequential order reduction, we
were able to reduce the 3D stress-strain tensor mapping problem
to a small number of super-constrained 1D mapping problems.
To systematically classify such mapping problems into a few cat-
egories, an assembly of multiple replicated conditional neural
network learning agents (L-agents) is used based on our recent
work. Each category is represented by a different type of agent.
The effect of deformation history, aging time, and aging temper-
ature is captured by this model. The model is validated using a
broad collection of data, ranging from our experimental results
to data from the literature. In addition, thermodynamic consis-
tency and frame independence are investigated. The most sig-
nificant achievements of this model are its precision, simplicity,
and prediction of inelasticity under various states of deforma-
tion. The model’s accuracy and simplicity make it a good option
for commercial and industrial applications. Conveniently, due
to the model modular nature, it can be expanded in the future
to include viscoelasticity and non-isotropic formation for better
precision.

INTRODUCTION
Nowadays, cross-linked elastomers, due to excellent work-

ability, form-ability, and versatility, play a significant role in
several industries such as aerospace, structure, transportation,
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shipbuilding, and automotive [1–3]. Cross-linked elastomers en-
counter aggressive environmental conditions during their opera-
tion, which affects their durability [4–6]. Overestimation of their
life-time can have high financial and environmental costs. Chem-
ical changes in these materials are known as degradation, that
occurs during a period referred as aging. Degradation affects
cross-linked elastomers’ performance and properties, including
their strength, toughness, and density.

In theoretical approaches, researchers usually combine
hyper-elastic constitutive models, which describe the hyperelas-
tic behavior of materials irrespective of the effects of aging time
and temperature, with degradation models, which demonstrate
the decay of materials during aging. Hyper-elastic models fall
into three main categorizes: the phenomenological approach, the
micro-mechanical approach, and the data-driven approach. In
the first one, a mathematical model is considered without any
physical interpretation, and model parameters are fitted by ex-
perimental data set. These phenomenological models, with a set
of material parameters, do not employ the micro-physics behind
materials [7]. The micro-mechanical approach is based on the
statistical mechanics of polymers’ structure and employs physi-
cal meaning during analysis. Thus, some of them can show in-
elastic behaviors of cross-linked elastomers, such as the Mullins
effect and permanent set. Three-chain model [8], eight-chain
model [9], full network model [10], extended tube model [11],
non-affine micro-sphere model [12], network alteration [13], and
network evolution model [14] are the most famous models in this
category. Micro-mechanical models, with functions and material
parameters related to micro-structure, consider micro-structural
information. However, given the complexity of these models,
their practical application is limited. The data-driven approach
tries to address the limitations of both phenomenological and
micro-mechanical models by obtaining micro-structural behav-
ior from the macroscopic experimental data set. Montans et al.
[15] proposed an inverse engineering data-driven model that cap-
tures hyper-elastic behavior of materials by solving a piece-wise
set of equations. Oritz et al. [16] proposed a data-driven model
by designing an optimization problem subject to constraints re-
lated to conservation and physical laws. In addition, we recently
proposed a neural network approach by the concept of network
decomposition, which not only predicts different states of defor-
mation but also indicates the inelastic behavior of cross-linked
elastomers [17–19].

In recent decades, the phenomenon of degradation has at-
tracted wide attention; Scholars have proposed different mathe-
matical degradation models based on their applications. Arrhe-
nius model [20], Archard model [21], and Paris model [22] fall
in single mechanism degradation, which is continuous and with-
out any fluctuation. Several models have been proposed from a
combination of constitutive models and degradation models. Ha-
Anh and Vu-Khanh [23] employed an Arrhenius function and
combined it with the Mooney-Rivilin model to predict the hyper-

elastic behavior of aged polychloprene. Lion et al. [24] proposed
a phenomenological model by splitting Helmholtz free energy
into three parts. In 2013, Johlitz [25] proposed a phenomenolog-
ical model that considers both mechanical and chemical degra-
dation. Meanwhile, in the micro-mechanics category, Moham-
madi et al. [4, 26] proposed a model for thermo-oxidative aging
that combined the Author’s network evolution model with the
Arrhenius function and different decay rates. This study [27]
investigated the geometry dependency of aging between sub-
strate and adhesive by employing finite element simulation based
on chemo-mechanical modeling. There are a few models that
theoretically investigate hydrolysis [28]. Viera et al. [29] pro-
posed a model for hydrolysis using Bergstrom and Boyce’s con-
stitutive model by decomposing mechanical behavior into time-
dependent and time-independent parts. In another study, the
author investigated the mechanical behavior of biodegradable
materials during hydrolysis aging by employing a quasi-linear
viscoelastic model [30]. In another micromechanical study,
Bahrololoumi et al. [31,32] proposed a model for hydrolysis that
combined Author’s network evolution model and Arrhenius de-
cay function. All the mentioned models have several advantages
and disadvantages.

Phenomenological approaches are empirical, simple, and
less interpretable; however, micromechanical approaches are
highly interpretable but complex because they consider the read-
justment of kinks, the rearrangement of convolutions, reorien-
tation, and the uncoiling of molecular chains. Meanwhile, the
emergence of machine-learned (ML) models has attracted much
attention as a way to address the mentioned challenges of the
phenomenological and micromechanical approaches.

The main objective of this work is to propose a simple data-
driven model to not only predict thermo-oxidative aging and
hydrolysis but also can show inelasticity which does not show
a fixed trend of deformation versus applied force. The pro-
posed model is based on the concept of a cooperative multi-agent
system A i

j , i ∈ {1,n} , j ∈ {1,m} to describe different features
in the material behaviour with n×m different Neural Network
learning agents (L-agents), which is responsible for learning
from experimental data sets. We have simplified the 3D stress-
strain tensor mapping problem into a small number of super-
constrained 1D mapping problems by means of a sequential or-
der reduction. We assume that during aging, the polymer matrix
is changed by degradation, and due to the lack of exact knowl-
edge on the behavior and interaction of polymer microstructures,
we model it using an L-agent system. The model is validated by
our set of experimental data. In addition, relaxation and intermit-
tent experimental data available in the literature are used to show
the proposed model’s accuracy in different conditions.
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Model and Method
Current phenomenological, micromechanical, and data-

driven methodologies for demonstrating stress-strain recorded in
cross-linked elastomers experience the effects of the absence of
information on 3D structures. Then, we are only ready to quan-
tify the strain recorded of the straightforward structure by utiliz-
ing digital image correlation (DIC) techniques.

- Continuum Mechanics In the first step, we use the 3D map-
ping of second order stress/strain tensors from continuum me-
chanics understanding. Here, by introducing strain energy Ψm
as the middle agent in mapping, where F→ Ψm → P, we can
use Finite strain theory to simplify F→ P mapping because it
needs complex fourth order tensor mapping in hyperelastic ma-
terials. Accordingly, strain energy can be replaced as the part of
the framework which needs to derive stress tensor P(F).

One specific benefit of using Ψm as the middle agent is that
it guarantees the material objectivity and thermodynamic con-
sistency on all the derived constitutive models (see Truesdell et
al. [33]). There are several conditions on strain energy, which
must be authorized in a data-driven model to be specific

Ψm(F)≥ 0 when F 6= 0 Increase energy,

Ψm(F) = 0 when F = I Normalization, (1)
Ψm(F)→ ∞ when detF→ ∞/0 Growth condition.

Meanwhile, the ellipticity constraint is a significant chal-
lenge for hyperelastic materials. In the absence of traction forces,
it can be applied by using strain energy. So, in our model, the
first constraint we implement is to compel agents to infer
Ψm(F) so that it fulfills Eq. 1 and polyconvexity condition.

- Microsphere In the second step, we implement a concept
from polymer physics for the cross-linked amorphous network.
For isotropic polymers, polymer chains are considered uniformly
distributed in every single spatial direction at the virgin state.
This homogenized spatial arrangement lets us use the micro-
sphere concept, which helps one to represent the 3D matrix as
a homogeneous assembly of 1D elements spread over a micro-
sphere in different spatial directions. This methodology can
move knowledge from super-simplified 1D components to cre-
ate a complex 3D polymer matrix by means of homogenization
over the unitsphere. Besides by discretizing the sphere into lim-
ited areas, the integration can be taken out mathematically over
Nd integration directions [di]i=1...Nd

with various weight factors
[wi]i=1...n [34]. The strain energy of polymer matrix Ψm in rela-
tion to its elements can therefore be written as

Ψm =
1

4π

∫
S

Ψ
d
mdS

d ∼=
Nd

∑
i=1

wiΨm
di , where Ψm

di = Bdi

(2)
where Ψm

di is the sub-matrix element energy in direction
di represented by one L-agent team Bdi reflecting an addi-
tive cooperation between multiple L-agents A i

• . Eq2 represents
the integral S(θ ,φ) =

∫
θ

0
∫ φ

0 sin(θ)dθdφ with the unit vector
r = sin(θ)cos(φ)ex + sin(θ)sin(φ)ey + cos(φ)ez over the unit-
sphere. Assuming an identical team in all directions in the virgin
state, namely Bdi = Bd j , initial isotropy is guaranteed, but due
to different loading in different directions, the material may eas-
ily become anisotropic. In addition, because L-agents respond
in each direction to varying loading, the model may consider
the onset of damage, deterioration, and propagation of cascad-
ing failure in directionally sensitive materials.

- Network Decomposition Network decomposition is the third
concept we are using from statistical mechanics which helps us
by infusing simple patterns on top of each other to predict com-
plex patterns. This concept represents energy of an element Ψm

di

by superposing the energy of multiple sub-elements, Ψm
di =

∑
Ns
j=1 Ψ j

di , where each sub-element is responsible for a single
inelastic feature. A team of cooperative L-agents Bdi = [A i

j ]
will calculate the energy of one element, representing each sub-
element by one L-agent, and then repeat this cooperative team in
different directions to provide us with the matrix energy. Conse-
quently, by substituting Eq. (2) we can extract the energy of the
matrix directly with regard to sub-elements and the L-agents as
given here that serve them.

Ψm =
1

4π

∫
S

Ψm
ddS

d ∼=
Nd

∑
i=1

Ns

∑
j=1

wiψ j
di

Ψm ≈
Nd

∑
i=1

Ns

∑
j=1

wiA
i
j where Ψm

di =
Ns

∑
j=1

A i
j . (3)

where, for each element, Ns is the number of sub-elements con-
sidered. For each sub-elements, super-simplified scalar-to-scalar
mapping behavior has been derived and can be represented by
a simplified feed-forward L-agent neural network. The first Pi-
ola—Kirchhoff stress tensor P can be derived on the basis of Eq.
3, as

P =
∂Ψm

∂F
− pF−T =

Nd

∑
i=1

Ns

∑
j=1

wi
∂A i

j

∂F
− pF−T , (4)
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where p signifies the Lagrange multiplier to ensure incompress-
ibility of the material.

Validation
Here, the model was validated by predicting the inelastic be-

havior of cross-linked elastomers for different states of deforma-
tion in two cases; (i) thermo-oxidative aging and (ii) hydrolysis.
Several experimental data sets from relaxation tests and inter-
mittent tests were used. Data sets were designed to capture the
effect of (i) deformation, (ii) deformation history, (iii) aging time
(t) and (iv) aging temperature (θ ). In both of the case studies, we
represented the matrix by 21 teams, each with two agents, which
is a very small number (21 integration-points [34]). Note that the
number of teams and their related agents can be chosen based on
the trade-off between accuracy and computational cost.

The inputs and internal parameters of L-agents were built
via λ j−max parameters to capture the deformation of the rubbers
with full memory. In order to allow teams to predict various
deformation states, the first and second deformation invariants
were supplied to each team [35]. The condition was satisfied
by providing input set Sdi

1 = [λ di
1 ;λ

di
1−max, t,θ ] to L-agent 1 and

Sdi
2 = [λ di

2 ;λ
di
2−max, t,θ ] to L-agent 2

λ1
di =

√
diCdi, λ2

di =
√

diC−1di, C = FT F (5)

where λ1
di and λ2

di were intended to lead to the first and sec-
ond sub-elements and to reflect, respectively, I1 and I2. For the
ANN structure of L-agents, we considered one input layer, one
hidden layer with four neurons and three activation functions,
softplus (ψ(•) = ln(1+ e•)), sinusoid (ψ(•) = sin(•)) and hy-
perbolic tangent (ψ(•) = tanh(•)). In short, the rubber matrix
was represented by a cooperative game of 21 teams of 2 agents
through A i

j , i ∈ {1,21} , j ∈ {1,2}. After agent fusion, the final
cost function is given by

E(W1,W2,W3) =
1
2 ∑

n=1
[g1(

21

∑
i=1

2

∑
j=1

wi
∂A i

j

∂λ j
di

∂λ j
di

∂F
− pF−T )g1−Pn]

2,

(6)
subjected to weights related to λ1−max and λ2−max < 0, and
weights related to λ1 and λ2 > 0 to satisfy thermodynamic con-
sistency and polyconvexity, respectively. We optimize the cost
function using optimization algorithms [36]. Eqs. (7) and (8)
demonstrate the derivation of the energy of each sub-element
with respect to the gradient of deformation.

21

∑
i=1

wi
∂A i

1

∂λ1
di

∂λ1
di

∂F
=

21

∑
i=1

wi
∂A i

1

∂λ1
di

1

λ1
di

F(di⊗di). (7)

21

∑
i=1

wi
∂A i

2

∂λ2
di

∂λ2
di

∂F
=−

21

∑
i=1

wi
∂A i

2

∂λ2
di

1

λ2
di

F−1F−T F−1 (di⊗di).

(8)
Case Study 1: Thermo-Oxidation + Mechanical Damage

Natural Rubber: Thermal degradation was predicted at vari-
ous times and temperatures to validate model prediction perfor-
mance. Firstly, experimental data from a natural rubber relax-
ation test filled with 60 phr carbon-black was used to demonstrate
model results. Fig. 1 shows the results.
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FIGURE 1. Training and model predictions for NR against; (a) inter-
mittent test, (b) relaxation test at ε = 20%, (c) relaxation test at ε = 50%.

Black SBR: We performed an experimental study to investi-
gate the impact of aging on the constitutive behavior of cross-
linked elastomers to further evaluate the efficiency of the model.
Black SBR sheets with a thickness of 1

800 were therefore pur-
chased from the company Rubbercal. Next, samples were
punched in accordance with the standard ASTM D412 using a
bone shape punch. We aged specimens at four different tempera-
tures in zero humidity. namely 45◦C, 60◦C, 80◦C and 95◦C. We
applied various sets of tensile and cyclic tests on aged samples
using a TESTRESOURCES tensile testing unit. Fig. 2 indicates
the performance of the model in the prediction of inelastic be-
havior such as the Mullins effect and permanent set.

Case Study 2:Hydrolysis + Mechanical Damage
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FIGURE 2. Training and model predictions for SBR against loading-
unloading responses at 60◦C; (a) unaged, (b) aged for 5 days, (c) aged
for 10 days, (d) aged for 30 days.

Styrene-butadiene rubber (SBR): SBR procured sheet with
dimensions of 24” ∗ 12” ∗ 0.125” was used from one batch-one
supplier with a punch die for validation of the invented model
(Die c from the ASTM-D412). Samples were placed at tempera-
tures of 60◦C and 80◦C at constant pressure in sealed containers
filled with distilled water. After that, ten days before character-
ization, they were removed and dried at room temperature. We
used an SFM-20 united testing machine with a 1000 lb load cell
for quasi-static tensile tests. A strain rate of 43.29 %

min was used
at room temperature for extension. The samples were stretched
until breakage in monotonic failure experiments, but the samples
were expanded to preset amplitudes of 1.3, 1.6, 1.9, and 2.1 in
the cyclic test. The central zone extension was measured using
an external extensometer. Fig. 3 shows the effect of time and
temperature on damages induced by deformation.

CONCLUSION
At present, there is no constitutive model that can cover

all single degradation mechanisms simultaneously for elastomers
(i.e. thermo-oxidative and hydrolytic aging). Single mechanisms
degradation changes the polymer matrix over time, consisting of
chain scission due to the presence of temperature, reduction of
cross-links attributed to the attendance of water, and reduction of
cross-links as a result of the oxygen existence. The mechanical
behavior of elastomers can be influenced directly by this alter-
ation in the polymer matrix. Here, the idealized Mullins effect
and permanent set have been modeled on the effect of single ag-
ing mechanisms on nonlinear mechanical responses of rubber-

1 1.2 1.4 1.6 1.8 2.2

Stretch

2

0

100

200

300

400

500

S
tr

es
s 

[p
si

]

Unaged

1 1.2 1.4 1.6 1.8 2.2

Stretch

2

0

100

200

300

400

S
tr

es
s 

[p
si

]

Temp. = 60, Time = 6 Days

1 1.2 1.4 1.6 1.8 2.2

Stretch

2
0

100

200

300

400

S
tr

es
s 

[p
si

]

Temp. = 60, Time = 10 Days

1 1.2 1.4 1.6 1.8 2.2

Stretch

2
0

100

200

300

400

S
tr

es
s 

[p
si

]

Temp. = 80, Time = 6 Days

1 1.2 1.4 1.6 1.8 2.2

Stretch

2
0

100

200

300

400

S
tr

es
s 

[p
si

]

Temp. = 80, Time = 10 Days

Prediction

Training
Prediction

Training

Prediction

Training

Prediction

Training

Prediction

Training

a) b)

c) d)

e)

FIGURE 3. Multiple SBR training and model predictions; (a) unaged,
(b) constitutive behavior for 6 days of age at temperature study of 60◦C,
(c) constitutive behavior for 10 days of age at temperature study of 60◦C,
(d) constitutive behavior for 6 days of age at temperature study of 80◦C,
(e) constitutive behavior for 10 days of age at temperature study of 80◦C.

like materials. We derived a CNN based constitutive model for
single mechanisms aging in quasi-static deformation for differ-
ent states of deformation. The method only requires a macro-
scopic experimental data set, which is available easily. The per-
formance and predictive capabilities of the model are illustrated
by comparing it to different sets of experimental data, such as re-
laxation and intermittent tests. Also, thermodynamic consistency
and frame independency of the model was investigated. The pro-
posed model is based on the homogeneous diffusion assumption
and is primarily suitable for thin samples. The accuracy and sim-
plicity of the model make it a proper choice for commercial and
industrial applications because we do not need to know the ex-
act behavior and interaction of micro-structures; however, in the
future, the model can be extended to consider viscoelasticity and
non-isotropic formation for better precision due to platform of
the model.
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