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ABSTRACT
The combined impacts of thermal, chemical, and physical

processes play a significant role in the pyrolysis problems in
polymeric materials. Thermal energy is transported into the ma-
terial via thermal convection when the charring materials are
subjected to high-temperature loading. Decomposition of the
resin will result in pyrolytic gases and solid leftovers. The mate-
rial can be split into three zones based on the degree of pyrolysis
of the material: (i) charring zone, in which the material entirely
decomposes; (ii) pyrolysis zone, in which the material is disin-
tegrating; and (iii) virgin material zone, in which the material
has not yet begun to decompose. Physics-informed neural net-
works (PINNs) are neural networks whose components contain
model equations, such as partial differential equations (PDEs).
A multi-task learning approach has emerged in which a NN must
fit observed data while decreasing a PDE residual. This arti-
cle introduces PINN architectures to forecast temperature dis-
tributions and the degree of burning of a pyrolysis problem in
a one-dimensional (1D) and two-dimensional (2D) rectangular
domain. The complex, non-convex multi-objective loss function
presents substantial obstacles for forward problems in training
PINNs. We discovered that adding several differential relations
to the loss function causes an unstable optimization issue, which
may lead to convergence to the trivial null solution or significant
deviation of the solution. To address this problem, the dimen-
sionless form of the coupled governing equations that we find
most beneficial to the optimizer is used. The numerical results
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are compared with results obtained from PINN to show the per-
formance of the solution. Our research is the first to explore fully
coupled temperature-degree-of-burning relationships in pyroly-
sis problems. Unlike classical numerical methods, the proposed
PINN does not depend on domain discretization. In addition to
these characteristics, the proposed PINN achieves good accu-
racy in predicting solution variables, which makes it a candi-
date to be utilized for surrogate modeling of pyrolysis problems.
In summary, the pyrolysis model of materials is solved with the
PINN framework; We assumed that all thermal properties of a
material (thermal conductivity, specific heat, and density) are af-
fected by temperature and degree of burning. While the achieved
results are close to our expectations, it should be noted that train-
ing PINNs is time-consuming. We relate the training challenge
to the multi-objective optimization issue and the application of a
first-order optimization algorithm, as reported by others. Given
the difficulties encountered and overcome in this work for the for-
ward problem, the next step is to use PINNs to inverse burning
situations.

INTRODUCTION
Pyrolysis is one of the many different types of chemical de-

composition processes that take place at higher temperatures. It
differs from other processes like combustion and hydrolysis in
that it seldom requires the addition of additional reagents such as
oxygen (O2) or water (in hydrolysis). Pyrolysis results in solids
(char), condensable liquids (tar), and non-condensing/permanent
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gases [1, 2]. Pyrolysis is widely used in the chemical industry
to make ethylene, various kinds of carbon, and other compounds
from petroleum, coal, and even wood, as well as to make coal
coke.

Before getting into the details of the models, it is crucial to
understand what happens when the polymer is exposed to a high-
temperature heat source. When organic matter is cooked in open
containers at rising temperatures, the following processes usually
occur in order, either sequentially or concurrently [3, 4]:

(i) Volatiles, including some water, evaporate at tempera-
tures below around 100C◦.

(ii) Any leftover water that has been absorbed in the polymer
is pushed out at around 100C◦ or somewhat higher.

(iii) Many typical polymer compounds degrade between
100C◦ and 500C◦ degrees Celsius. Water, carbon monoxide
CO, and/or carbon dioxide CO2, as well as a vast range of or-
ganic molecules, are common decomposition products. Gases
and volatile compounds leave the sample, and some may con-
dense back into the smoke. In most cases, this procedure also
consumes energy. Some volatiles has the potential to ignite and
burn, resulting in a visible flame. The non-volatile residues of-
ten grow more carbon-rich and form big disordered molecules
that range in color from brown to black. The substance is said to
have been ”charred” or ”carbonized” at this stage.

(IV) If oxygen is not removed, the carbonaceous residue
may begin to burn at 200− 300C◦, in a highly exothermic pro-
cess with a minimal or little visible flame. The temperature
rises spontaneously after carbon combustion begins, converting
the residue into a blazing ember and producing carbon dioxide
and/or monoxide.

(V) When the carbonaceous residue is completely burned,
a powdery or solid mineral residue (ash) is frequently left be-
hind, which is made up of inorganic oxidized minerals with a
high melting point. Some of the ash may have been entrained
by the gases as fly ash or particulate emissions during burning.
The polymer continues to decompose endothermically until the
reaction zone reaches the material’s back-face, when the rest of
the polymer is degraded to volatiles and char.

Carbon combines with oxygen, and is driven off as CO and CO2

(NO2 , NO3 , and other oxides also form)
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FIGURE 1. Processes in the thermal degradation of polymers.

In general engineering applications, the advent of Machine
Learning (ML) and AI in recent years has provided an opportu-
nity to construct quick surrogate ML models to replace classical
FEM. Classic neural networks, on the other hand, map across
finite-dimensional spaces and can thus only learn discretization-
specific solutions. This is frequently a constraint in actual appli-
cations, necessitating the creation of mesh-invariant neural net-
works. The finite-dimensional operators and Neural-FEM are
two popular neural network-based techniques for solving multi-
ple PDEs [5, 6].

Neural-FEM. The third method is known as the physics-
informed neural network (PINN). PINN differs from other ma-
chine learning paradigms widely employed for mechanics and
physics challenges in terms of how data is needed and employed.
Unlike supervised learning, which is often used for materials
laws and requires artificial intelligence to be trained with labels
in order to generate forecasts, the search for the solution in PINN
does not require any data other than the ones required to form the
loss function [7–11].

PINN challenges. The training of PINN, however, is far
from simple. To construct the multi-layer perceptron, non-
linearities should be applied to each element of the output of the
linear transformation. This is unlike the finite element method,
which is a more entrenched framework with clear strategies and
established mathematical analysis that guarantees convergence
and stability for both the solution and weighting functions in pre-
determined finite-dimensional spaces. Furthermore, for both for-
ward and inverse problems, the physical constraints or control-
ling equations could be expressed in several ways; for instance,
the collocation-based loss function, which evaluates the solution
at specific collocation points, or the energy-based method that
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can reduce the order of the derivatives in governing equations
despite requiring numerical integrations. A large number of tun-
able hyperparameters, such as the configurations of the neural
network, the types of activation functions, and the neuron weight
initialization, as well as different techniques to impose boundary
conditions while providing significant flexibility, may bewilder
researchers who are unacquainted with neural networks [12–14].

Model and Method
- Heat Equation Thermal energy is transported into the poly-
mer via thermal convection when the charring polymers are sub-
jected to high-temperature loading. Decomposition of the resin
will result in pyrolytic gases and solid leftovers. The polymer
can be split into three zones based on the degree of pyrolysis of
the polymer, as shown in Figure 1: (i) charring zone, in which
the polymer entirely decomposes; (ii) pyrolysis zone, in which
the polymer is disintegrating; and (iii) virgin material zone, in
which the polymer has not yet begun to decompose [15].

In the thermal study of heat transfer in polymers, three main
types of thermal energy transmission are often considered: con-
duction, convection, and radiation. However, for the sake of
simplicity, all mathematical models for polymers cover the ef-
fect of heat conduction in the case of one-sided heating only.
The effect of external convection on heat transfer is rarely ex-
plored. Similarly, heat radiation from a polymer is rarely taken
into account. So, the following PDE governs heat transfer in
polymers, i.e., heat transfer with internal heat generation is ex-
pressed as [16, 17].
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(1)
where T is the temperature, Cp, k, and ρ are the solid’s specific
heat capacity, conductivity, and density, respectively, and Q̇ is the
rate of internal heat consumption. The change in thermal energy
per unit volume is represented on the left-hand side of the equa-
tion, while the energy flux owing to conduction is represented on
the right-hand side. The through-thickness direction is defined
by the x-direction, whereas the planar directions are defined by
the y- and z-directions.

Internal heat consumption in polymeric adhesives is ex-
pressed as a function of the degree of burning α ∈ (0,1), which is
a measure of the conversion achieved during the polymeric ma-
terial’s burning reactions. The relationship between Q̇ and α , in
particular, can be expressed as [18, 19]

Q̇ =−Qr
dα

dt
, (2)

where Qr is the heat of reaction generated per unit mass of poly-
mer during burning [20]. The evolving degree of burning in poly-
meric materials is usually controlled by an ordinary differential
equation that indicates the rate of burning as a function of imme-
diate temperature and degree of burning [21, 22].

dα

dt
= g(α,T )> 0. (3)

In the space-time domain (x, t), this results in a coupled sys-
tem of differential equations for temperature and degree of burn-
ing. The temperature T (x, t) and degree of burning α(x, t) in the
polymeric material are predicted by solving this system of differ-
ential equations with initial and boundary conditions. The aim of
this research is to solve the system of differential equations for
the polymeric system burning.

- PINN In the PINN methodology, network training takes place
by minimizing the total loss of the network parameters Θ,

Θ
∗ = argmin

Θ∈RD
LT (X;Θ). (4)

An error or loss function is defined in PINNs utilizing the
network’s processed outputs and derivatives based on the equa-
tions guiding the problem’s physics. As a result, the network’s
total loss, LT , is made up of the sum of loss terms for the PDE
(LF ), and the initial and boundary conditions (LB).

LT (Θ) = LF (Θ)+LB(Θ), (5)

The loss caused by a mismatch with the governing differ-
ential equations F is represented by the first term, LF . It im-
poses the differential equation F at collocation points over the
domain, Ω, which can be chosen uniformly or unevenly. The
other term, B (ûΘ) = g, represents the loss caused to mismatch
with the boundary or initial conditions. A mean square error for-
mulation is used in a common implementation of the loss [23],
where

LF (Θ) = MSEF = (6)

1
Nc

Nc

∑
i=1

∥F (ûΘ (zi))− f (zi))∥2 =
1

Nc

Nc

∑
i=1

∥rΘ (ui)− ri∥2,

and
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LB(Θ) = MSEB =
1

NB

NB

∑
i=1

∥B (ûΘ(z))−g(zi))∥2. (7)
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FIGURE 2. A schematic of PINN blocks. Differential equation resid-
ual (loss) terms, as well as initial and boundary conditions, make up
PINNs.

Validation

Training and Hyperparameter Searches It is hardly surpris-
ing that network size and architecture, as well as optimizer hy-
perparameters like learning rate, can have a significant impact
on PINN solution quality. We used the hyperbolic-tangent and
sigmoid activation functions to create neural networks with four
hidden layers and 20 neurons in each layer for all of the examples
in this paper. We used the Adam optimizer with an initial learn-
ing rate of 2∗10−3 and an exponential learning decay to 10−5 at
the end of training. We have also explored a range of hyperpa-
rameters, but we have not noticed any substantial improvements
in terms of improving the pyrolysis problem studied here. Fig. 3
shows the training history for various hidden layers and neurons.

1 layer - 15 nodes
2 layers -15 nodes
6 layers -15 nodes

10 layers -15 nodes

Epochs

L
os

s

100

10-1

10-2

10-3

10-4

0 200 400 600 800 1000

FIGURE 3. Losses for a variety of hidden layers.

Comparison with Numerical Results The reference numeri-
cal model results will be compared to the above-mentioned best-

performing PINN model outputs in this part. Fig. 4 shows the
PINN, numerical solution, and errors. As you can see, the PINN
solution has a high level of agreement with the expected solution
when compared to the findings of numerical analysis. The upper
face is given a temperature of Tt = 700, while the bottom face is
given a temperature of Tt = 700sin( π

20 t). T0 = 700x3 is the initial
temperature.
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FIGURE 4. PINN and numerical predictions for full cycle of burning
for temperature (left), and degree of burning (right).

CONCLUSION
In this paper, we studied a comprehensive study on Physics-

Informed Neural Networks (PINNs) for the forward solution
of pyrolysis problems by making the training more straightfor-
ward. We explored how Physics-Informed Neural Networks
(PINNs) can be employed to solve pyrolysis problems in the for-
ward phase. Our research is the first to explore fully coupled
temperature-degree-of-burning relationships in pyrolysis prob-
lems. We presented a dimensionless version of these relations
that leads to the optimizer’s stable and convergent behavior.

While the achieved results are close to our expectations, it
should be noted that training PINNs is time-consuming. We re-
late the training challenge to the multi-objective optimization is-
sue and the application of a first-order optimization algorithm, as
reported by others. Given the difficulties encountered and over-
come in this work for the forward problem, the next step is to use
PINNs to inverse burning situations.
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