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ABSTRACT
The behavior of Cross-linked Polymers in finite deforma-

tions is often characterized by nonlinear behaviour. In this paper,
we propose to embed an artificial neural network (ANN) within
a micro-mechanical platform and thus to enforce certain phys-
ical restrictions of an amorphous network such as directional
dependency and history-dependency of the constitutive behavior
of rubber-like materials during loading and unloading. Accord-
ingly, a strain energy density function is assumed for a set of
chains in each direction based on ANN and trained with experi-
mental data set. Summation of the energies provided by ANNs in
different directions can determine the strain energy density func-
tion of the matrix. Stress-strain relation is derived from strain
energy density function. Polyconvexity is enforced to assure min-
imized potential energy, a global solution for an optimization
problem, and thermodynamic consistency that show the model
cannot generate energy. The model is validated against multiple
sets of experimental data, e.g. uniaxial, shear, and biaxial defor-
mation available in the literature. This model captures not only
the loading and unloading paths but also the inelastic response
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of these materials, such as the Mullins effect and permanent set.
The model can be generalized to other materials and other in-
elastic effects as well.

INTRODUCTION
Elastomers are widely meshed and cross-linked polymers

that evince entropically elastic behavior and do not show re-
versible deformation. Their constitutive model plays a significant
role in the determination of their mechanical behavior. Based
on how these models are derived, elastomer models are catego-
rized into phenomenological and micro-mechanical models [1].
Each of these categories comes with an inherent set of pros and
cons. The first one is less complex, and usually, it is based on
preset functions of strain invariants or principal stretches while
disregarding the micro-structure of elastomers. On the contrary,
micro-mechanical models are complex, but they consider the
physical interpretation of elastomers. Many theoretical and ex-
perimental studies have been conducted on mechanical proper-
ties of them [2–4].

Among a large number of phenomenological models, few of
the most formidable ones are introduces in the following. Og-
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den [5], in 1972, proposed a model to provide an adequate rep-
resentation of the mechanical response of rubber-like materials.
This model is simple and amenable to mathematical analysis.
This is a stretch based model which ensures strain energy for-
mulation as the summation of scaled power of principal stretch.
Hereon, all mentioned phenomenological models in this paper
are invariant based. In 1940, Mooney-Rivlin [6] model was pro-
posed. This model is the summation of first and second invariant
with their coefficients taken into consideration. In 1943, Neo-
Hookean [7] model was proposed that is relatively simpler than
Mooney-Rivlin model because it just considers first invariant. In
order to add a curvature shape to last models that could not cap-
ture the ”S” shape behavior of elastomers, Isihara [8] added the
square of first invariant to Mooney-Rivlin model. This nonlinear
term captures the data better than the mentioned models. Af-
ter seven years, Gent and Thomas [9] proposed another model
based on the summation of first invariant and logarithm of sec-
ond invariant. This model, in fitting, is identical to Neo-Hookean
model results. Caroll [10], in 2011, proposed a three-parameter
strain energy function based on first and second invariants. This
model shows an acceptable fitting but not as well as Swanson’s
model. In 2016, Zhao [11] proposed a model by deriving a partial
differential equation that considers the balance between stored
energy and stress work. As a result, the non-negligible problem
of phenomenological models is that they are invariant based, and
with a set of material parameters, they cannot describe some im-
portant mechanical behavior, such as softening, hardening, and
deformation state dependency. In this state, we can see some ad-
vantages of micro-mechanical models compared to another cate-
gory.

Micro-mechanical approaches are usually based on the de-
formation behavior of a single chain and the expansion of a cer-
tain number of chains in different directions. So, they can be
directional dependent. Each chain consists of some rigid beams,
and its movement in space is based on the random walk assump-
tion Fig. 1.

Cross-link

Macro scale Micro scale Nano scale

Chemical bondPolymer chain

Nano particles

FIGURE 1. Schematic illustration for microstructure of filled elas-
tomers which is depicted micro scale and nano scale

Three chain model [12] was proposed in 1943. It considers
three chains along with eigenvectors of isochoric right Cauchy-

Green tensor and create a free energy function for elastomers.
Like three chain model, Arruda and Boyce proposed eight chain
model [13]. The only difference is that there are eight chains
along with half diagonals of a cube. In 2002, Miehe et al. [14]
proposed a unit sphere model that chains are along with radius
vectors from the center. These chains have a uniform distribu-
tion over the sphere. The complexity of micro-mechanical mod-
els is because of integration over the sphere. Although we sim-
plify it with converting this integration to a summation, higher
computational cost remains yet. Farhangi et al. [15, 16] inves-
tigated the effect of fiber. Hossain [7] showed in his paper that
none of these models could predict different deformation states
because they are directional based. Some researchers have re-
formed sphere model to solve these challenges. Miehe et al. [17]
proposed a model, in 2004, that is non-affine micro-mechanical
model to solve one of the challenges. They considered the mo-
tion of chains with assuming the contribution of topology con-
straints in their motion. In 2016, Khiem and Itskov [18] pro-
posed a model based on network-averaging of the tube model. In
2002, Marckman et al. [19] proposed network alteration theory
to show Mullins effect. They added damage to improve eight
chain model in order to capture softening in rubbers. In 2013,
Dargazany et al. [20] proposed a network evolution model in or-
der to see anisotropic Mullins effect and permanent set. Their
model is based on inverse Langevin function [21]. Mohammadi
et al. [22,23] add thermo aging to this model, and Bahrouloloumi
et al. [24,25] added hydrolytic aging to the model. The advantage
of micro-mechanical based models is that they can show inelas-
tic behavior in materials. The recent rise of machine learning as
a powerful technique for data analysis is impressive and prac-
tical [26, 27]. But, it does not work without combination with
laws of physics. Some valuable researches have been conducted
on the modeling of behavior of materials based on experimental
data. Shojaeifard et al. [28,29] proposed a viscoelastic model and
its framework in FEM. In 2004, Shen and Chandrashekhara [30]
proposed a neural network based model for constitutive model-
ing. They showed that their results were acceptable compared
to ABAQUS results. Oritz et al. [31], in 2016, proposed a data-
driven model for elastic materials. They designed a constraint
optimization problem while considering conservation laws and
material laws. In 2019 [32], They extended their model to ma-
terial history dependent. Their work is based on their last idea.
However, they added time to their model to capture the effect
of history in behavior of inelastic materials. A neural network
based for the prediction of nonlinear viscoelastic materials was
proposed by Al-Haik et al. [33]. They predicted stress relax-
ation of polymer matrix composites. Hashash et al. [34] by using
a neural network constitutive model, to bypass stiffness matrix
concept in finite element. However, they did not consider mate-
rial laws and loading-unloading paths in their training.

This paper is organized as follows; in section 2, the main
concepts of damage in constitutive model are introduced and de-
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scribed in detail. Energy function estimation based on ANN, is
presented in section 3. Section 4 explains the idea and formu-
lation of the proposed model in detail. Model verification with
experimental data is discussed in section 5. On resume, section
6 provides some concluding remarks and outlines some perspec-
tives.

Damage in Elastomers
Elastomers exhibit changes in their mechanical behavior af-

ter first extension known as Mullins effect, which was first in-
vestigated by Mullins and his colleagues [35]. This phenomenon
happens to both types of filled and unfilled elastomers. To pro-
vide a better micro-mechanical understanding of the damage re-
sulting from Mullins effect, Fig. 2 shows some of the proposed
physical interpretations of this effect in the literature i.e. chain
breakage [36] in the filler interface, chain disentanglement [37],
molecules slipping [38] and rupture in cluster of fillers [39]. Af-
ter applying loading and unloading to filled elastomers, due to
anisotropic damage in the material, a residual strain remains in
the material known as permanent set. However, the permanent
set in unfilled rubber is negligible.

deformation deformation

deformation deformation

Bond rupture Molecules slipping

Filler rupture Disentanglement

(a) (b)

(c) (d)

FIGURE 2. Physical explanation of Mullins effect

Energy Function Estimation
One of the concepts used in the statistical mechanics of soft

material is the assumption of uniform distribution of polymer
chain in diffident directions, which can be taken into account by
averaging the response of the material over a micro-sphere. In
these models, unit sphere act as a bridge between macro scale be-
havior of the material and micro scale (see Fig. 3). This approach

can transfer information from micro structure behavior to the
macroscopic behavior via homogenization over the unit sphere.
In micro-sphere approach, the average response of the material
over the sphere can be numerically calculated by n integration
directions [di]i=1...n that are weighted by factors [wi]i=1...n. On
the other hand, for cross-linked polymers, researchers use strain
energy density function (Ψ) in terms of the deformation gradient
to obtain stress by taking the derivative of strain energy. Hence,
strain energy function over the sphere can be approximated by

Ψ =
1

4π

∫
S

ψ
ddS

d ∼=
n

∑
i=1

wiψi
di , (1)

which ψi
di is strain energy in direction di, and 4π is normal-

ization factor.

Proposed model
In this study, two parallel ANNs are considered as the strain

energy of a set of available chains in each direction. The utiliza-
tion of ANN concept for energy function makes it to be consid-
ered as a phenomenological approach. It adds advantages of phe-
nomenological models to proposed model, which is mentioned in
the introduction section. Subsequently, the summation of ener-
gies provided by ANNs in different directions of micro-sphere
results in the strain energy function of the whole matrix. This as-
sumption adds to the advantages of micro-mechanical category
to our model. Fig. 3 shows a schematic design for the concept
of this novelty in this research. In order to consider damage and
history dependency of inelastic behavior of rubbers, we designed
the proposed ANN model based on this. For the first ANN of the
chains, one input is λmax, one input is λ , and one input is one in
order to remove over-fitting and bias problems in ANN training.

Output of first ANN is
~di
ψ1 which ~di shows the direction of each

chain in micro-sphere. For the second ANN of the chains, we
have one as input for over-fitting challenge, βmax as input, and β

as another input. Output of second ANN is
~di
ψ2. So, summation

of
~di
ψ1 and

~di
ψ2 is the strain energy of a single chain.

Input Hidden Output Input Hidden Output

ANN + ANN
λmax

λ

1

1

βmax

β

1

1

di
ψ1

di
ψ2

Single ChainMicrosphere

ANN ANN 

FIGURE 3. Schematic of proposed model for a microsphere

λ
~di and β

~di are defined as:
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λ
~di =

√
~diC~di, β

~di =

√
~diC−1~di, (2)

which C = FT F is right Cauchy-Green deformation tensor
and F is deformation gradient tensor. We can write the total strain
energy of microsphere as

Ψ = Ψ1 +Ψ2 =
1
As

∫
S

(
ψ1

d +ψ2
d
)

d
d
u ∼=

k

∑
i=1

(
ψ1

di +ψ2
di
)

wi,

(3)
which As is the surface area of microsphere and wi is weight

factor corresponding to directions di. The strain energy of a sin-
gle chain can be calculated as

ψ
d =ψ1

d +ψ2
d =ANN1(W1,λ

~di ,λmax
~di)+ANN2(W2,β

~di ,βmax
~di),

(4)
which W1 and W2 are weight matrix of first and second

ANN respectively. Moreover, the first Piola-Kirchhoff stress ten-
sor P can be written as

P =
∂Ψ

∂F
− pF−T =

∂Ψ1

∂F
+

∂Ψ2

∂F
− pF−T . (5)

For incompressible elastomers, detF = 1 and p denotes an
arbitrary scalar parameter to guarantee incompressibility. We can
express mentioned derivation as

∂Ψ1

∂F
=

k

∑
i=1

wi
∂ψ1

di

∂λ di

∂λ di

∂F
,

∂Ψ2

∂F
=

k

∑
i=1

wi
∂ψ2

di

∂β di

∂β di

∂F
. (6)

From now on, the only challenge is the design and training
of two ANNs, which show the strain energy of a single chain by
using the experimental data set. Depending on the complexity
of the problem, a multi-layered ANN can be defined for a single
chain. In this study, we used a costume structured feed-forward
ANN with one hidden layer and four neurons, which is coded by
our self, not employing any packages.

Verifying Proposed Model with Experimental Data
ANN models for materials, usually, are trained by stress-

stretch experimental data set. During training, ANN model ap-
proximates the relation between stress and stretch. Unlike math-
ematical constitutive models, ANN constitutive models can be
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FIGURE 4. Convergency in the training of proposed ANN model
with experimental data set

continuously retrained to adapt to new experimental data set as
they get generated from new experiments. Besides, the selec-
tion of stress-stretch data set plays a vital role in the success of
the model. This data set for training should cover the range for
which this model will be used. Hence, in order to train our model
with the data set, we need to define an error to minimize the dif-
ference between the approximated model and experimental data
to calculate the weight matrix. The only difference with a sim-
ple (1D) ANN training is that here, we have the summation of
21 ANNs in 21 different directions such that each ANN in each
direction has two parallel ANNs. The output of all of ANNs in
different directions is strain energy that we should consider for
training with our experimental data set. We can express the error
as

E(W)=
1
2∑

j
[

(
k

∑
i=1

wi
∂ψ1

di

∂λ di

∂λ di

∂F
+

k

∑
i=1

wi
∂ψ2

di

∂β di

∂β di

∂F
− pF−T

)
j

−Pj]
2,

(7)
that i shows the number of directions in a microsphere, j

shows the number of data in a set, W is weight matrix, and Pj
is experimental stress j in data set. The training of the proposed
model is conducted by a set of experimental data available in the
literature [40]. We trained the proposed model by bi-axial data
and predicted uni-axial extension and pure shear. Also, in order
to guarantee that the strain energy function is polyconvex and
ensure thermodynamics consistency, the weights that connect the
input of λ and β to other neurons should be positive. In contrast,
the weights that connect λmax and βmax to other neurons should
be negative. So, we have a constraint optimization problem to
solve for training our model subjected to weights related to λmax
and βmax ≤ 0 ; and weights related to λ and β ≥ 0

Fig. 4 shows the error to the number of iterations after train-
ing.
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FIGURE 5. Model training and prediction of uni-axial, bi-axial and
shear [40]

Loading Tension Response

In order to show the model can capture hyper-elastic behav-
ior in different states of deformation, we use two experimental
data sets from literature. In both of them, we train the model with
bi-axial tension and predict uni-axial tension and pure shear. The
only difference in ANN during loading deformation is that λmax
and βmax are equal to λ and β respectively. This limitation of
the data leads to a model with only two inputs. Fig. 5 shows
the results, respectively, for each data set. The results show the
excellent performance of the proposed model for loading under
different states of deformation.

Compression Response

Compression behavior of rubber like material is another one
of their aspects that plays an essential role in industrial appli-
cation. In order to show that the proposed model can train and
predict their behavior, in this subsection, we trained data set of
uni-axial compression experiments and predicted the behavior of
shear compression. Fig. 6 shows the performance of the pro-
posed model for compression tests.
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FIGURE 6. Model training with uni-axial compression and prediction
of shear compression [41]

Loading and Unloading Response in uni-axial Tension

The large strain behavior of filled rubbers is characterized by
the strong Mullins effect, permanent set. Prediction of these in-
elastic features in elastomers is an important challenge with im-
mense industrial and technological relevance. To consider that,
unlike the last part, in this part, we consider λmax and βmax as
input in ANN model because modeling of inelastic effects is de-
pendent on the history of material. On the other hand, training
and fitting play a crucial role in the set of parameters in different
constitutive models. Due to the simplicity of uni-axial extension
test, usually, data of this state of deformation is available. Elas-
tomerov et al. [42] showed in their paper that using one particular
mode of deformation is not sufficient for fitting. Hereunder, Fig.
7 shows Mullins effect and permanent set for two data sets of uni-
axial extension. We show that with the training of uni-axial data,
we not only can interpolate Mullins effect but also extrapolate it
during uni-axial deformation.
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CONCLUSION
The motivation behind this work is the absence of a data-

driven model that can describe the inelastic behavior of elas-
tomeric materials for various states of deformation. In this study,
we have proposed an ANN based constitutive model, which is
a combination of the phenomenological and micro-mechanical
categories to capture the inelastic behavior of elastomers. Stress-
stretch experimental data sets used to train the ANN based con-
stitutive model. This model has the potential to describe the be-
havior of any elastomeric materials along with their inelastic be-
havior, such as Mullins effect and permanent set. The model has
been tested for various elastomers in different loading conditions
(uni-axial extension and compression, bi-axial, pure shear, shear
compression) and shows excellent performance to reveal inelas-
tic behavior of elastomers. The model was trained by only a data
set of a specific sate of deformation and predicted all other ex-
perimental curves. The ANN model has some weight constraints
to guarantee polyconvexity and thermodynamics consistency that
are necessary for proposing a constitutive model.
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